<u>Inttps://inuico.cem.cn/event/125554</u>

WP4 : Beam instrumentation, characterization and dosimetry

GSI, 20.04.2023 Knowledge Transfer Meeting https://indico.cern.ch/event/1255543/ HEARTS

Uli Weber / Tim Wager / C. Schuy GSI Biophysics

This project has received funding from the European Union's Horizon Europe Research and Innovation programme

under GA No 101082402.

Agenda

09:30 → 10:00	Welcome and Introduction
10:00 → 10:30	Definition of Terms and discussion for goals and precision
10:30 → 11:00	Raster-scanning beam application at GSI
11:00 → 11:10	Coffee brea
11:10 → 11:30	Concept for dosimetry with raster scanning at GSI Including: Correction factor for HZE-particle and the MC-approach
11:30 → 12:30	Existing Instrumentation for beam monitoring and dosimetry at GSI: Presentation and hands-on
12:30 → 13:20	Lunchbreal

13:20 → 14:00	Visit Cave A
	Optionally a visit of the viewpoint for FAIR construction site
14:00 → 14:45	CERN concept for dosimetry
	 CERN beam line operation, layout and existing beam instrumentation CERN diode system for dosimetry: experience with VHE ion beams, status and pla
14:45 → 15:00	Coffee break
15:00 → 15:30	University Oldenburg contribution
	 Instrumentation and ideas for dosimetry equipment at CERN PTW Octavius for HEZ (high energy and Z) irradiation (content of the GSI PAC prop
15:30 → 16:10	First Discussion: How to make CERN and GSI dosimetry comparable?
	First ideas for an dosimetry benchmark experiment (which field, ions, etc.)
16:10 → 16:40	Next steps
16:40 → 17:00	Closing

2

GSI Biophysics: Preparation for Carbon Ion beam therapy project (1995)

HEARTS

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

Preparation for Carbon Ion beam therapy project (1997):

A big team from GSI, Forschungsz. Rossendorf, Heidelberg University Clinic and DKFZ

GSI Biophysics: Carbon Ion beam therapy project (1997 - 2008)

- 440 patients in 11 years
- Brain tumours
- Clinically very successful

before treatment

6 Weeks after carbon tfeatment with a dose of 60 Gye

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

GSI Biophysics: Long history of beam application by raster scanning, precise dosimetry and beam characterisation

Raster Scanning beam application

HEARTS

- Precise 3D dose application for ion beam therapy
- Dedicated beam monitoring detectors
- → Good infrastructure for radio biology and radiation hardness experiments

Setup: Preclinical irradiations (mice) for carbon FLASH experiments (2023)

Setup: Radiation tests for the AMS spectrometer (ISS) at GSI, CaveA

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

Dosimetry in Radio Therapy

Medical radiation dosimetry involves measurement, calculation, and assessment of the quantity and quality of ionizing radiation exposed to and attenuated by the human body

Absorbed dose D is a dose quantity which is the measure of the energy E deposited in <u>matter</u> by <u>ionizing radiation</u> per unit mass.

Dose :
$$\Delta E / \Delta m = \Delta E / (\Delta V \rho)$$
 Unit: $Gy = J / kg$; **Applicable for**
HEARTS
Dose rate: dD / dt **Unit**: Gy/s

Radiation Protection (Equivalent Dose) with weighting factors

HEARTS

$$H_T = \sum_R W_R \cdot D_{T,R}$$

Biologically equivalent dose (RBW) : [GyE] or [Gy biol. equ.]; RBE protons := 1.1 ; Carbons: typ 1.1 – 3.0

Broader Meaning: "Characterisation of the radiation field"

Absorbed dose D as defined in clinic Dose , absorbed energy E per mass

- absolute Dose : $\mathbf{D} = \Delta E / \Delta m = \Delta E / (\Delta V \rho)$ [Gy = J / kg];
- relative Dose (distribution) : $D(x,y,z) \sim D_{absolute}(x,y,z)$, but less precision in the absolute value (e.g. film measurements, Octavius)

Particles / area : Fluence Φ or F

•	Fluence	:	Φ = ions / area [1 / cm ²] , is always a mean value (statistical hits)
•	Fluence distribution	:	Φ (x,y,z) (e.g. in the pencil beam or scattered beam)
•	Flux (particle flux)	•	$J = ions / (area \times time) [1 / (cm2/s)]$

Energy spectra

- Spectra: dN/dE (Z_i, E) ; Z_i different species in a mixed field; relevant for **GCR spectrum**
- Double differential spectra: $d^2N/(dE d\theta) (Z_i, E)$; relevant for strongly scattered fields
- Lineal spectra micro dosimetry: lineal energy y [eV/µm] dE/dL energy (one event, mean chord length, random intersection)

Definition of Terms and discussion for goals and precision

"Dosimetry" (WP4) for Hearts

Accuracy:

Dose accuracy: ± 5 % (at normal intensities)

Fluence accuracy: ± 5-10 % ? (depending on the conditions)

Fixed correlation Dose to Fluence:

$$D = \Phi \times \frac{dE}{dx} \times \frac{1}{\rho}$$

Dosis [Gy] = 1.6×10^{-10} dE/dx [MeV/cm] $\times \Phi$ [1/cm²] / ρ [g/cm³]

Referenz Conditions for Dose measurement (proposal)

Reference condition	Size/ condition
Depth of measurement	z = 0.5-1.0 cm in plastic
Size of field	min. 8 x 8 cm ²
Phantom	PMMA or RW3
Homogeneitiy of lateral distribution	< 3%
Position	lso-centre resp. room reference point

(these settings should be also used for beam monitor calibration)

9

Raster-scanning beam application at GSI (Cave A foot print)

HEARTS

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

Cave A Scanner Geometry

Cave A Scanner–Geometrie

15-03-99 DS

Scanner dipoles

HEARTS

Scanner parameters (2nd dipole)

Parameter		Scanner Cave A
max. deflection angle	±0.5°	
nominal radius ρ	[m]	36
gap size	[mm]	70
magn. flux density B	[T]	0.50
magn. rigidity Bp	[Tm]	18
Field ramp	[T/ms]	55
max. current	[A]	300
effective magnet leng	gth [m]	0.314
overall length	[m]	0.550
Power supply		bipolar
DC power loss	[kW]	3.2

Scanning capabilities

Energies	80-1000 MeV/u(2000 MeV/u)				
lons	H to U				
Intensity range	500 – 10 ⁹ per spill				
Extraction	Slow 1-10 s (quadrupole resonance)				
Spill length	0.2 – 10s				
Spill pause	< 2s				
Max scan area	Up to 20 x 20 cm ²				

Typ. max scan speed : 20 m/s

Beam spot intensities for a 3D scan, 16 energy layers

*			
Slice ± 0	Slice : 1	Slice : 2	Slice : 3
Silice : 4	Silter : 5	Slice : 6	Slice : 7
Slice : 0	Slice : 9	Slice : 10	Slice : 11
	slice : 13	Slice : 14	Slice : 15

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

15

Beam State

Square scan	Superposition of beam spots	Irradiation plan, sphere
	Gaussian FWHM (typ. 5-20 mm)	<pre><?xml version="1.0" encoding="UTF-8"?> <pttxplan> <beam uid="bee035c5-03f6-4e9c-94b9-31f0fc484db1"> <rstformat>PT_2004</rstformat> <patient 3"="" <txroom="" <txtable="" angle="90" charge="6" datetime="2" id="ICRU23_non-human_QA-ID200904221541" lateral="150" longitudinal="<Gantry" mass=" <BAMS rippleFilter=" mr.="" name="Room1" phantomdoctor"="" pitch="0" projectile="10N" rangeshifter="3" rangeshifterdis="" rol1="0"></patient> <ies energy="223.56" focus="8.500" number="1"> <voxel particles="314969.0" x="-10.000" y="4.000"></voxel> <voxel particles="314969.0" x="-10.000" y="2.000"></voxel> <voxel particles="314969.0" x="-10.000" y="2.000"></voxel> <voxel particles="314969.0" x="-10.000" y="-2.000"></voxel> <voxel particles="314969.0" x="-10.000" y="-2.000"></voxel> <voxel particles="314969.0" x="-8.000" y="-4.000"></voxel> <voxel particles="314969.0" x="-8.000" y="-2.000"></voxel> <voxel particles="314969.0" x="-8.000" y="-8.000"></voxel> <voxel particles="314969.0" x="-6.000" y="-8.000"></voxel></ies></beam></pttxplan></pre>
OFF	Beam has normally a Gaussian lateral beam profile	 <voxel particles="314969.0" x="-4.000" y="-8.000"></voxel>
Animation: Tim Wagner	 The width (FWHM) of the beam must be a multiple of scan spot distance (for homogeneous flunce) 	<pre><voxel particles="314969.0" x="-4.000" y="-6.000"></voxel> <voxel particles="314969.0" x="-4.000" y="-4.000"></voxel> <ies energy="222.31" focus="8.500" number="2"></ies></pre>
HEARTS	FWHM = 2.355 x σ (Sigma der Gauß-verteilung) HEARTS Knowledge Trans. meeting, GSI, 20.04.2023	<pre></pre>

HEARTS

Energy layers for a real toumor

17

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

Short demonstration at the Cave-A Scanner Control System later during the tour

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

Calibration of the beam monitors and the beam application system is performed by measuring the dose

- A homogeneous scan is applied and dose is measured at the surface
- Afterwards the calibration factors were rescaled for the right dose

frontiers

FAIR

Beam monitor calibration for

radiobiological experiments with

scanned high energy heavy ion beams at

Francesca Luoni^{1, 2}, Uli Weber^{1*}, Daria Boscolo¹, Marco Durante^{1, 2}, Claire-Anne Reidel^{1, 3},

Proportionality factor f_e can be calculated:

 $f_e = \frac{F}{\frac{E}{W} \cdot e}$

F: beam particles per monitor pulse
W: W-value mean energy expended in the gas per ion pair
E: energy loss per particle in the beam monitor

Energy [MeV/u]	330
Z of ion (eg. 18 for Ar)	82
active gap [mm]	10
E-loss (interpol.) [MeV / (mg/cm2)]	17.18
E-loss [MeV]	28.98
Charge per ion [fC]	169.22
IFC-amplification [pC/pulse] correction faktor:	0.10
Calibration factor [particles / pulse]	0.59
Calibration factor [pulse / particles]	1.69218

Excel calculator can be provided

How to measure precisely the dose?

- Calibration sheet from manufacturer (Co-60) ☑ N_{DW} [Gy/C]
- Temperature and air pressure corrections: $k_D = \frac{(273.2 + T)p_0}{(273.2 + T_0)p_0}$
- **Correction factor for the beam quality:**

KALIBRIERSCHEIN Nr. 1002299 PTW-Freiburg, Lörracher Str. 7, 79115 Freiburg, Germany 2 +49-(0)761- 49055-0 FAX +49-(0)761- 49055-70 Kalibriergegenstand Strahlungsdetektor

Detektor Detektortyp	TM30013-04584 Ionisationskammer	
Kontrollvorrichtung Halter	T48012-0419 48002.3.003-1058	
Hersteller	PTW-Freiburg	
Auftraggeber	GSI - Gesellschaft für Schwerionenforschung mbH Postfach 11 05 52 64220 Darmstadt	Auftragsnummer: AU1003243 Auftragsdatum: 23.06.2010
Ergebnis der Kalibrierur	ng	
Messgröße	We serenergieuosis (e _w)	
Detektor-Kalibrierfaktor	$N_{D,w} = 5,380 \cdot 10^7 \text{Gy} / \text{C}$	
Strahlungsqualitätskorrektur	Strumen Qualität Korrekturfaktor ko	Unsicherheit
	⁶⁰ Co 1,000	1,1 %
	for a Coba	lt beam

Correction factor k_Q for the beam quality:

$$k_Q = \frac{(S_{w,air})_Q}{(S_{w,air})_{Q_0}} \cdot \frac{p_Q}{p_{Q_0}} \cdot \frac{(W_{air})_Q}{(W_{air})_{Q_0}}$$

$$Q_0 : \text{Cobalt-60 photons}$$

S_{w,air}: water-to-air stopping power ratio

 $\boldsymbol{p}_{\boldsymbol{Q}}~$: perturbation factor of the ionization chamber

W_{air}: W-value (energy per ion pair)

TABLE 31. CALCULATED VALUES OF k_Q FOR PROTON BEAMS, FOR VARIOUS CYLINDRICAL AND PLANE-PARALLEL IONIZATION CHAMBERS AS A FUNCTION OF BEAM QUALITY $R_{\rm res}$

TRS 398

Ionization chamber t	Ionization chamber type ⁴					Beam quality $R_{\rm res}~({\rm g/cm^2})$										
	урс	0.25	0.5	1	1.5	2	2.5	3 3	3.5 4	4.5	5 5	7.5	10	15	20	30
PTW 23323 micro	_	1.027	1.025	1.025	1.025	1.024	1.024	1.024	1.024	1.024	1.024	1.024	1.024	1.023	1.023	1.023
PTW 23331 rigid	_	1.037	1.035	1.034	1.034	1.034	1.034	1.034	1.033	1.033	1.033	1.033	1.033	1.033	1.033	1.032
PTW 23332 rigid	_	1.031	1.029	1.028	1.028	1.028	1.028	1.028	1.027	1.027	1.027	1.027	1.027	1.027	1.027	1.026
PTW 23333	_	1.033	1.031	1.031	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.029	1.029	1.029	1.029	1.028
PTW 30001/30010 Farmer		1.033	1.031	1.031	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.029	1.029	1.029	1.029	1.028
PTW 30002/30011 Farmer		1.036	1.035	1.034	1.034	1.034	1.034	1.033	1.033	1.033	1.033	1.033	1.033	1.033	1.032	1.032
PT <u>W 30004/30012 F</u> armer	_	1.044	1.042	1.041	1.041	1.041	1.041	1.041	1.041	1.041	1.040	1.040	1.040	1.040	1.040	1.039
PTW 30006/30013 Farmer	\rightarrow	1.033	1.032	1.031	1.031	1.031	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.029	1.029	1.029
PTW 31002 flexible	_	1.032	1.030	1.029	1.029	1.029	1.029	1.029	1.029	1.029	1.029	1.028	1.028	1.028	1.028	1.027
PTW 31003 flexible	_	1.032	1.030	1.029	1.029	1.029	1.029	1.029	1.029	1.029	1.029	1.028	1.028	1.028	1.028	1.027

 k_0 factors are mainly calculated

Can be verified by calorimetric measurements (graphite or water)

142

0

Absorbed Dose Determination in

An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water

Sponsored by the IAEA, WHO, PAHO and ESTRO

External Beam Radiotherapy

🛞 🛞 🕥 ESTRO^{*}

Uran 800 MeV/u depth dose curve

F. Horst, U. Weber et al.

Precise measurement of the Bragg curve for 800 MeV/u ²³⁸U ions stopping in polyethylene and its implications for calculation of heavy ion ranges

<u>Journal of Instrumentation</u>, <u>Volume 17</u>, <u>December 2022</u> **DOI** 10.1088/1748-0221/17/12/P12019

Existing Instrumentation for beam monitoring and dosimetry at GSI: Presentation and hands-on

Dose measurements chambers

PTW TM30013 Farmer chamber (working horse for monitor calibration) PTW M31009 Farmer chamber (pin point)

HEARTS

Bragg peak chamber Bragg Peak 150 Type 34089

PTW Octavius Multi ionisation chmaber Array 1500 XDR and 1600 XDR

having 1500 resp 1600 single ionisation chambers

Time resolution! 10 Hz

HEARTS Knowledge Trans. meeting, GSI, 20.04.2023

PTW Octavius 1500 XDR in Movie mode

Scanned C12 beam at HIT

Existing Instrumentation for beam monitoring and dosimetry at GSI: Presentation and hands-on

Therapy beam monitor unit

3 x parallel plate ionisation chambers (integral beam intensity)

2 x position sensitive wire proportions chamber

MWPCs currently not available Readout electronic is updated For TERA08 Chip Parallel plate ionisation chambers

For beam monitoring in FLASH experiments

• Gas filled (He/ArCO2) for minimum recombination

29

- 20 x20 cm active area
- 2 x 10 mm gas gap
- up to 2000 V

Existing Instrumentation for beam monitoring and dosimetry at GSI: Presentation and hands-on

Beam monitoring for scanning at high intensity

Parallel plate ionisation chambers, Helium/CO2 filled up to $^{5}\times10^{10}$ carbons ion/s (or equivalent dose)

SEETRAM

SEcondary Electron **TRA**nsmission **M**onitor (highest beam intensity possible)

In-vacuum detector Secondary electrons emitted from the middle foil are collected by the two outer foils. Existing Instrumentation for beam monitoring and dosimetry at GSI: Presentation and hands-on

Beam monitoring for scanning at low intensity

Thin (2 mm x 80 x 80 mm²) plastic scintillator with PMT

Works well for counting particles for

- Fixed pencil beams
- small field scanning < 60 x 60 mm

up to 10^6 ions/s

New project: Development of a Scintillator based Detector for Particle counting and Beam Position monitoring

GSI Helmholtzzentrum für Schwerionenforschung GmbH

GCR simulation

Validation

Suffers if event multiplicity is high!

ΔE / E

Suffers if event multiplicity is high!

ΔE / E

First Discussion: How to make CERN and GSI dosimetry comparable?

Beam parameters at GSI and CERN

		-	 1	
	GSI	comments	CERN *2	comments
Energies	80-1000 MeV/u	Typically 2-3 energies	600- 5000 MeV/u ^{*2} Actually applied : 1000, 750, 650 MeV/u	Will be improved to 70 – 8000 MeV/u
lons	H to U	typically C, Fe, U *1	Pb	
Intensity range Dose rate	500 – 10 ⁹ per spill 1 Gy/s for 10 ⁹ C12	Depends (a bit) on the ion species	≈10 ⁹ ions per spill ??	
Extraction	Slow 1-10 s (quadrupole resonance)	Optional slow RF-KO (1 – 10 s), Fast kick out extraction (<1µs)		
Spill length	0.2 – 10s		200 – 400 ms	
Spill pause	< 2s	Variable duty cycle	2 spills every 45 seconds	
Delivery	Scanning	Arbitrary shapes	Static beam position	Beam shaping with collimators and octupoles envisioned
Max area	Up to 20 x 20 cm ²	< 5 x 5 cm ² for uranium	Gaussian 10x10cm ²	Will be increased to Rectangular 20x20cm ²
Uniformity	Better than ±5%		Trade-off between beam size and homogeneity	Will be improved to ±10%

38

*1 additional ions like protons, helium might be available
 *2 CERN data taken from the HEARTS Proposal document

HEARTS

How to make CERN and GSI dosimetry comparable?

- Selection of 1 or 2 certain irradiation cases (e.g. Fe-56 1 GeV/u squared field , 10x10 cm²)
- Selection of the dosimetry detector setup (must be applicable at both facilities)
- ightarrow Conduction of the test at both facilities (CERN & GSI)

Define a protocol (setup and test case) for GSI / CERN

- 1.) High intens scenario
- 2.) Low intens scenario

For raster scanning the monitor calibration is easier than for a broad beam. Even if we enlarge the field, the monitor calibration remains the same. Actually, for scanning we can enlarge the field in very well defined way.

