

University of Oldenburg Contribution

Vanessa Wyrwoll

20.04.2023

• Our Background and Expertise

- Our Background and Expertise
- The Detector Array

- Our Background and Expertise
- The Detector Array
- Other Dosimetry Options

- Our Background and Expertise
- The Detector Array
- Other Dosimetry Options
- Possible Contribution

- Our Background and Expertise
- The Detector Array
- Other Dosimetry Options
- Possible Contribution

Background

- Experience in using detector arrays for treatment plan verification in radiotherapy
- Different types of detector arrays are in use at linear accelerators for radiation therapy, suitable for photon and heavy ion radiation
- Monte Carlo simulations of correction factors on a chamber level accuracy
- Effects of target fragmetation on water equivalent tissue / dose to water

Current projects FLASH/R2E -> New Working Group R2E (V. Wyrwoll)

2 PhD Students

Schüller et al, 2020 Physica Medica Kranzer et al, 2020, Medical Physics

4 PhD students

Wyrwoll, V et al 2020 *IEEE Transactions on Nuclear Science* Wyrwoll, V., 2020 *IEEE Transactions on Nuclear Science*. Wyrwoll, V. et al 2020, *NUCL INSTRUM METH A* Poppinga, D et al 2020, Biomed Phys Eng

Daniela Poppinga¹[®], Rafael Kranzer^{1,5}, Wilfrid Farabolini^{3,4}, Antonio Gilardi^{2,4,6}[®], Roberto Corsini⁴, Vanessa Wyrwoll⁴, Hui Khee Looe⁵, Björn Delfs⁵, Lukas Gabrisch⁵ and Björn Poppe⁵

1 DTM Ersihurg Ersihurg Commany

Seite 9 20.04.2023

Dr. Vanessa Wyrwoll, Carl von Ossietzky Universität Oldenburg IAEA.TRS398 etc.

Semiflex 3D 31021, and PTW PinPoint 3D 31022.

Detector Development

2. 1D-Detectors

3. Signal - Theory

sität

4. Non-Reference Conditions

1.

Stelljes et al Medical Physics (2018) Stelljes T *et al.* Medical Physics (2017) Blank *et al.* Physica Medica (2016) Stelljes *et al.* Medical Physics (2015) Poppe *et al.* Medical Physics (2014) Poppe *et al.* "Green Journal" (2010) Poppe *et al.* Medical Physics (2007) Heilemann *et al.* Medical Physics (2013) Poppe *et al.* Medical Physics (2006) Poppe *et al.* ZMP (2006)

...

2. Schönfeld et al (2019) Poppinga et al Med Phys (2019) Büsing. Z Med Phys (2019) Poppinga et al Med Phys (2018) Looe et al Med. Phys (2018) Poppinga et al. (ZMP 2017) Burke et al. ZMP (2016) Poppinga et al (2014) Looe et al. PMB (2011) Djouguela et al. ZMP (2008) Djouguela et al. ZMP (2006)

... 3.

Looe et al PMB (2019) Looe et al PMB (2018) Looe et al. PMB (2016) Looe et al. PMB (2016) Looe et al. PMB (2015) Looe et al. Mecia Physics (2013) Poppe et al. Medical Physics (2007)

4.

...

Chofor *et al.* ZMP (2015) Chofor *et al.* ZMP (2014) Chofor *et al.* ZMP (2014) Looe *et al.* PMB (2013) Chofor *et al.* PMB (2012)

VESPER

The Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments

Dosimetry with Very High Energy Electrons at CERN

60MeV – 200 MeV Electrons

Dose Rates up to nearly 2 kGy/s

Simulation of Jupiter Radiation Belts

Built for testing missions to Jupiter

Dose rate in radiation belts ca. 6Gy/min (Equivalent to clinical linac)!!

Ion collection efficiency of ionization chambers in ultra-high dose-per-pulse electron beams

Rafael Kranzer^{a)}

PTW-Freiburg, Freiburg 79115, Germany University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg 26121, Germany

Daniela Poppinga and Jan Weidner PTW-Freiburg, Freiburg 79115, Germany

Andreas Schüller and Thomas Hackel Physikalisch-Technische Bundesanstalt, Braunschweig 38116, Germany

Hui Khee Looe and Bjorn Poppe University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg 26121, Germany

Oldenburg: Flash-Activities

Radiation/Particle Detection and Transport Calculations

Seite 13 20.04.2023

- Our Background and Expertise
- The Detector Array
- Other Dosimetry Options
- Possible Contribution

One of the Possible Experiments The Detector Array

- Easy-to-use opportunity to put a measurement device into the beam
- Array with detector matrix suitable for measurements of heavy ions and beam characterization
- Device is already in use for QA in treatment plan verification for radiotherapy
- Different types available

Previous Experiment with the Array:

North Area CERN 2018 with 150 GeV/n lead

H8 North Area 150 GeV/n ²⁰⁸Pb

All grey elements have been removed during the tests in Nov. 2018

Experimental Set-Up

DETECTOR ARRAY (can be replaced by DUT)

Seite 17 20.04.2023

1000SRS set-up in the North Area CERN 2018

DETECTOR ARRAY (can be replaced by DUT)

Seite 18 20.04.2023

1000SRS set-up in the North Area CERN 2018

Seite 19 20.04.2023

Previous Results with the Array

Fig. 5. Illustration of on-line beam monitoring during exposure to the 150 GeV/n 208 Pb beam in H8 of the SPS-NA using the OCTAVIUS 1000SRS liquid ionization chamber array.

Fig. 10. 2D illustration of the measurement with the film attached behind the array (right) and recorded by the array (left).

Seite 20 20.04.2023

Octavius 1000SRS and Films in front of array

mm

Seite 21 20.04.2023

Octavius 1000SRS and Films behind array

mm

Horizontal and vertical line profiles measured with the 1000 SRS array integrated over 5 and 364 ion spills

Comparison of horizontal and vertical beam profiles of the array and Gafchromic film attached **in front of** the array

Comparison of horizontal and vertical beam profiles of the array and Gafchromic film attached **behind** the array

Calculation of dose to water

$$D_w = (M - M_0)^{^{60}\text{Co}} N_{\text{D,W}} k_Q$$

Seite 26 20.04.2023

Calculation of dose to water

$$D_{w} = (M - M_{0})^{60} \text{Co} \text{N}_{\text{D,W}} k_{Q}$$

Seite 27 20.04.2023

Calculation of dose to water

Calculation of dose to water

Calculation of correction factor k_Q calculated with FLUKA

$$k_{Q} = \frac{\left(\frac{D_{water}}{D_{chamber}}\right)_{208_{Pb}}}{\left(\frac{D_{water}}{D_{chamber}}\right)_{60}}_{CO}}$$

Seite 30 20.04.2023

Stopping Power calculation

In general, restricted LET:

 $S/\rho = \frac{E_{deposited}}{(voxel \, length \, in \, z \, direction \, * \, density_{water})}$

Stopping Power calculation

In general, restricted LET:

$$S/\rho = \frac{E_{deposited}}{(voxel length in z direction * density_{water})}$$

However, here a weighted calculation was needed, due to a lead percentage of 70%

$$\bar{S}/\rho = \frac{\int_{0}^{(LET)_{max}} \phi(LET) \cdot S/\rho(LET) d(LET)}{\int_{0}^{(LET)_{max}} \phi(LET) d(LET)}$$

Seite 32 20.04.2023

Weighted Stopping Power calculation

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 7, JULY 2020

Heavy Ion Nuclear Reaction Impact on SEE Testing: From Standard to Ultra-high Energies Vanessa Wyrwoll[®], Rubén García Alía[®], Ketil Røed, Pablo Fernández-Martínez[®], Maria Kastriotou[®],

1590

Matteo Cecchetto[®], Nourdine Kerboub[®], Maris Tali[®], and Francesco Cerutti

Calculation of particle fluence distribution and convert to counts

$$\Phi(\mathbf{x}, \mathbf{y})[cm^{-2}] = \frac{D_W(x, y)\left[\frac{J}{kg}\right]}{S/\rho\left[\frac{MeV\ cm^2}{mg}\right]} \frac{10^{-6}\frac{kg}{mg}}{1\cdot 10^6\cdot 1.6\cdot 10^{-19}\frac{J}{MeV}} \longrightarrow counts = \iint \Phi(x, y)dxdy$$

Seite 34 20.04.2023

Comparison between DWC signals and the line integrals of the 1000 SRS array

For more Details in the Paper

On-line beam monitoring and dose profile measurements of a ²⁰⁸Pb beam of 150 GeV/n with a liquid-filled ionization chamber array

V. Wyrwoll ^{a,b,*}, B. Delfs ^c, M. Lapp ^d, D. Poppinga ^d, P. Fernandéz Martinéz ^a, M. Kastriotou ^e,

R. García Alía^a, K. Røed^b, A. Gerbershagen^a, H.K. Looe^c, B. Poppe^c

^a CERN, CH 1211, Genève, Switzerland

^b University of Oslo, Problemvelen 7, 0315 Oslo, Norway
^c University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany d PTW Freiburg, Lörracher Str. 7, 79115 Freiburg im Breisgau, Germany * ISIS Facility, UKRI-STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK

1000SRS and Film

First online image of a 120 GeV Lead Beam

Seite 36 20.04.2023

- Knowledge of beam properties at the position of the experiment is important for the user
- Beam shape has been examined and compared with dosimetry films
- Particle flux and dose to water has been examined at the position of the experiment

- Our Background and Expertise
- The Detector Array
- Other dosimetry Options
- Conclusion Possible Contribution

Other possible ways of dosimetry in VHE and UHE heavy ion beams

- Different array available (including possible modifications depending on the beam properties)
- Farmer chamber
- Gafchromic Films
- Advances Markus Chamber
- Measurements in a water phantom or solid water

Farmer Chamber

Farmer[®] Chamber Type 30013

Waterproof therapy chamber for reference dosimetry in high-energy photon, electron and proton beams

- Acrylic wall, graphited
- Aluminum central electrode
- Waterproof
- Sensitive volume 0.6 cm³, vented
- Reference class in accordance with IEC 60731 and AAPM TG-51 Addendum

The 30013 Farmer chamber is the standard ionization chamber for reference dose measurements in radiation therapy. Correction factors needed to determine absorbed dose to water or air kerma are published in the pertinent dosimetry protocols. Its waterproof design allows the chamber to be used in water or solid state phantoms. The acrylic chamber wall ensures the ruggedness of the chamber.

General		Max. dose per pulse for ≥ 99.5 % saturation	0.46 mGy
Application	reference dosimetry in radiotherapy	Ranges of use	
	beams	Chamber voltage	± (100 400) V
Measuring quantities	absorbed dose to water,	Radiation quality	30 kV 50 MV photons
	air kerma, exposure		(10 45) MeV electrons
Reference radiation quality	⁶⁰ Co		(50 270) MeV protons
Design	waterproof, vented, guarded	Field size	(5 x 5) cm ² (40 x 40) cm ²
Direction of incidence	radial	Temperature	(10 40) °C
			(50 104) °F

Materials and measures

0.335 mm PMMA, 1.19 g/cm3
0.09 mm graphite, 1.85 g/cm ³
56.5 mg/cm ²
radius 3.05 mm
length 23.0 mm
Al 99.98, diameter 1.15 mm
PMMA, thickness 4.55 mm

Ion collection efficiency at nominal voltage

on collection time	140 µs	
Max. dose rate for		
≥ 99.5 % saturation	5 Gy/s	
≥ 99.0 % saturation	10 Gy/s	
Max. dose per pulse for		
≥ 99.5 % saturation	0.46 mGy	
≥ 99.0 % saturation	0.91 mGy	

(10 ... 80) %, max 20 g/m³ Humidity

Specification

Farmer Chamber

• Farmer chamber

Seite 41 20.04.2023

Advanced Markus

- Well-guarded in accordance with TRS-398
- Thin entrance window and waterproof protection cap
- Small-sized for high spatial resolution
- Sensitive volume 0.02 cm³, vented

The 34045 Advanced Markus chamber is the successor of the well-known classic Markus electron chamber, equipped with a wide guard ring for perturbation-free measurements. The thin entrance window allows measurements in solid state phantoms up to the surface. The protection cap makes the chamber waterproof for measurements in water phantoms.

General

Type of product	vented plane-parallel ionization
Application	chamber
Application	electron beams
Measuring quantities	absorbed dose to water, air kerma
Reference radiation quality	⁶⁰ Co
Design	waterproof with protection cap, vented, guarded
Direction of incidence	perpendicular to chamber plane

Specification

Nominal sensitive volume	0.02 cm ³
Nominal response	0.67 nC/Gy
Long-term stability	≤ 1 % per year
Chamber voltage	300 V nominal
	± 400 V maximal
Polarity effect	\leq 1 % for electrons > 9 MeV

Materials and measures	
Entrance foil	0.0

Entrance foil	0.03 mm PE (polyethylene CH ₂),
	2.76 mg/cm ²
Protection cap	0.87 mm PMMA, 1.19 g/cm ³ ,
	0.4 mm air
Total window area density	106 mg/cm ² , 1.3 mm
	(protection cap included)
Water-equivalent window	1.04 mm
thickness	(protection cap included)
Dimensions of sensitive	radius 2.5 mm
volume	depth 1 mm
Guard ring width	2 mm

Ion collection efficiency at nominal voltage

· · · · · · · · · · · · · · · · · · ·	
on collection time	22 µs
Max. dose rate for	
\geq 99.5 % saturation	187 Gy/s
≥ 99.0 % saturation	375 Gy/s
Max. dose per pulse for	
≥ 99.5 % saturation	2.78 mGy
≥ 99.0 % saturation	5.56 mGy
	-

Ranges of use

Chamber voltage	± (50 300) V
Radiation quality	(2 45) MeV electrons
	(50 270) MeV protons
Field size	(3 x 3) cm ² (40 x 40) cm ²
Temperature	(10 40) °C
	(50 104) °F
Humidity	(10 80) %, max 20 g/m ³
Air pressure	(700 1060) hPa

Advanced Markus

Seite 43 20.04.2023

Water Phantom

Water Phantom

- Versatile, application-specific solution
- Appropriately sized, fully automatic 3D water tank with up to 38 cm (MP3-P; vertical)/50 cm (MP3-PL; horizontal) scanning depth
- parallel walls and a thin exchangeable entrance window for precise horizontal beam measurements
- Detector positioning accuracy true to 0.1 mm
- Electrometer with extended measurement range also suitable for reference dose measurements

- Our Background and Expertise
- The Detector Array
- Other Dosimetry Options
- Conclusion Possible Contribution

Conclusion - Possible Contribution

- Expertise in the field of Monte Carlo simulation on a chamber level of details
- Expertise in characterization of detectors and correction factors
- Already performed dosimetry in a UHE lead beam at CERN 2028 using a 1000SRS detector array
- Possible changes and modifications of available PTW detectors
- Access to a variety of PTW detectors