

Validation of the 65 nm **TPSCo CMOS imaging** technology for the **ALICE ITS3**

Chiara Ferrero* on behalf of the ALICE collaboration

*Politecnico Torino, INFN Torino

TWEPP 2023 Oct 2 - 6, 2023

Chiara Ferrero | TWEPP 2023 | 03.10.2023

ALICE ITS3: D-MAPS with small collection diode in 65 nm

ALICE ITS3 involved in the evaluation of the TPSCo 65 nm technology performance for particle detection

Multi Layer Reticle "MLR1" submission:

- transistor test structures for radiation hardness studies
- various diode matrices for charge-collection studies
- analog building blocks

D-MAPS: depleted monolithic active pixel sensors

First sensor prototypes in 65 nm process in collaboration with CERN EP R&D on monolithic sensors

Test structures

шш

S.

1.5 mm

- Matrix: 6×6 pixels
- Pitch: 10, 15, 20, 25 μm
- Direct analogue readout of central 4×4 submatrix
- AC/DC coupling
- 3 process modifications
- Purpose: testing pixel cell

- Matrix: 32×32 pixels
- Pitch: 15 µm
- Asynchronous digital readout
- Time-over-Threshold information
- Only modified with gap process modification
- Purpose: testing pixel front-end

CE-65 Circuit Exploratoire 65

- Matrix: 64x32, 48x32 pixels
- Pitch: 15, 25 µm
- Readout: rolling shutter analog
- Purpose: testing pixel with rolling shutter

Characterization tests

Laboratory

- 1. Pulse and noise measurements
- 2. Tests with ⁵⁵Fe source (5.9 keV X-rays)
 - Tuning of chip parameters
 - Signal calibration
 - Study of the charge collection
 - Performance comparison of different process modification and split

Aluminium holder

Impact of implant geometry

APTS

- Performance comparison of different prototype variants
- The standard process shows a charge sharing contribution that is not visible for the modified and modified with gap process

Reverse bias and pixel pitch influence

 Signal amplitude increases with reverse bias →reduction of input node capacitance

ALICE

Reverse bias and pixel pitch influence

- Signal amplitude increases with reverse bias →reduction of input node capacitance
- Modified with gap shows the best performance in terms of charge collected by one pixel
 - \rightarrow independent from pixel pitch

Characterization tests

In-beam measurements:

- Use of charged particles (π, e^{-})
- Reconstruction of particles tracks using the Corryvreckan framework
- Association of tracks with cluster on the plane

Efficiency and FHR Spatial and temporal resolution

Beam test campaigns completed:

2021 DE

DESY September 2021 - DPTS PS October 2021 - APTS-DPTS SPS November 2021 - APTS-DPTS DESY December 2021 - DPTS

2022

DESY March 2022 - DPTS MAMI April 2022 - APTS SF PS May 2022 - DPTS PS June 2022 - APTS SF SPS June 2022 - APTS OA PS July 2022 - DPTS PS August 2022 - APTS SPS October 2022 - APTS SPS November 2022 - APTS OA DESY December 2022 - DPTS

2023

PS May 2023 - APTS SF and DPTS SPS May 2023 - APTS SF SPS June 2023 - APTS OPAMP SPS July 2023 - APTS-SF

Process impact on APTS detection efficiency

More than 99% detection efficiency over large threshold range for modified processes

Pixel pitch influence on APTS detection efficiency

APTS

Detection efficiency increases with pixel pitch in the modified with gap process

Reverse bias influence on detection efficiency and FHR

wide operational range of the sensor featuring a detection efficiency above 99%

Reverse bias influence on detection efficiency and FHR

Chiara Ferrero | TWEPP 2023 | 03.10.2023

\mathbf{I}_{bias} influence on detection efficiency and FHR

Effect of irradiation level on spatial resolution and cluster size

- Different levels of irradiation for various TID and NIEL
- Spatial resolution comparable for different irradiation levels
- Cluster size slightly decreases with NIEL irradiation

APTS vs DPTS vs CE65 testbeam comparison

Seed pixel signal normalized spectra in electrons are all in agreement

Timing resolution

APTS-OpAmp

Sensor contribution only ~ 77 ps

DPTS

- Readout scheme correction: correction for a fixed offset introduced for odd and even columns
- Time walk correction: fit the ToA vs ToT distribution and subtraction of the value from the measured data points

Sensor + front-end ~ 6 ns

Summary

- Extensive test campaigns have been carried out with ⁵⁵Fe source on different APTS prototypes:
 - modified with gap process showed the best charge collection performance with suppression of charge sharing
- Multiple beam tests:
 - Above 99% detection efficiency for a wide range of working points
 - Radiation hardness better than the requirement from ALICE ITS3 (10 kGy + 10¹³ 1MeV neq/cm²)
 - Spatial resolution and cluster size measured for different irradiation levels up to 10¹⁵ 1MeV neq/cm² and 100 kGy
 - Timing resolution measured for both APTS OpAmp (~ 77 ps) and DPTS (~ 6 ns)

The 65 nm technology has been validated for particle detection in terms of charge collection efficiency, detection efficiency and radiation hardness

Backup slides

DPTS ToA vs ToT distribution

APTS OpAmp - Fall time vs amplitude

Modified with gap: 80% of cluster size 1 events lies in the region with fall time lower than 1 ns, compared with 20% of the standard process

Chiara Ferrero | TWEPP 2023 | 03.10.2023

Reverse bias influence - NIEL 10¹⁵ 1MeV neq/cm²

~ 99% efficiency reached at 20°C

DPTS

Only the **10¹⁵ 1MeV neq/cm²** irradiated sensor shows performance deterioration

Reverse bias influence on DPTS spatial resolution and cluster size

Chiara Ferrero | TWEPP 2023 | 03.10.2023

Monolithic design - DPTS

Monolithic design - APTS

CE65: Process modification reduces charge sharing

- In-pixel architecture and process have an impact on the charge collection properties
- Effect observed in APTS with ⁵⁵Fe sources confirmed at beam test
- In modified process all charge is mostly collected by single pixel

