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SOI pixel sensor

◼ Monolithic pixel sensor, based on a 200 nm FD-SOI CMOS process

⚫ Low leakage low power transistors

⚫ 1 Poly 5 Metal layers

⚫ MIM Capacitor (1.5 fF/um2), DMOS (4 fF/um2)

⚫ Core voltage = 1.8 V, IO voltage = 1.8/3.3 V

⚫ High Resistivity substrate (a few kΩcm) to detect charged particles and X-ray photons 
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◼ PDD structure consists of multiple sensor layers:

⚫ Buried N-Wells: BNW, BNW2, BNW3 (collection electrode)

⚫ Buried P-Wells: BPW, BPW2 (shielding layer)

⚫ P-type HR substrate: P-sub (sensitive volume)

Pinned Depleted Diode (PDD)

◼ PDD structure offers

⚫ Very small diode capacitance (a few fF) 

⚫ Depletion volume up to substrate thickness

⚫ Optimization of lateral electric field

⚫ Shielding against electrical coupling

⚫ Suppression of leakage current
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Electric field in PDD structure:
Ref: doi:10.3390/s18010027 by Shoji Kawahito
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◼ Originally developed by T-micro and KEK in Japan and demonstrated on the SOFIST 3D chips for the ILC

⚫ Essentially, flip-chip and micro bump connections

⚫ Au bump, diameter ~ 3.5 um, pitch ~ 7 um, resistance 0.3 ~ 0.4 Ω

⚫ Multiple bumps in each pixel, for signals and power/ground connections

⚫ Glue injection for mechanical strength
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Compatibility between SOI and 3D

◼ Through Box Via (TBV) used for the bond pad connections

⚫ The same type as the connection to the sensing diode (naturally a Via-first method)

⚫ Thickness of BOX layer, 0.2 um

⚫ Very small holes, 0.32 um in diameter

◼ Handle silicon of the upper chip removed precisely, reaching the thin BOX layer and exposing TBVs

⚫ Wet etching stopped automatically by the Buried Oxide (BOX)

◼ Bond pads and passivation on top of BOX
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Development of the CPV SOI pixel sensor

◼ Targeting on a position resolution ~ 3 um and a readout scheme compatible with the continuous mode for the 

proposed CEPC experiment

⚫ CPV-1&2 for the study of position resolution of small pixels with binary readout (FEE2018)

⚫ CPV-3 for the study of PDD sensing diode (NIMA 1040 (2022) 167204)

⚫ CPV-4 for the 3D architecture (this talk)

2015.06 2016.06 2019.02

2020.11

CPV-1 CPV-2 CPV-3

CPV-4 Lower

CPV-4 Upper

Process assessment S.P. Resolution 2.3 μm;
Thinned to 75 μm

Pinned Depleted Diode;
Optimized for low FPN 12 e-

CPV-4

3D architecture;
Stacking process;
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Compact Pixel for Vertex (CPV)

Pixel size: 
16 um × 16 um

Pixel size: 
16 um × 16 um

Pixel size: 
16 um × 20 um

Pixel size: 
17 um × 21 um



CPV-4 design scheme

◼ Lower tier: PDD sensing diode + amplifier/comparator

◼ Upper tier: Hit register + 2 Control bits + Matrix readout

⚫ Bit 1 for mask, bit 2 for pulse test

◼ 2 vertical connections in each pixel: comparator output and configuration bit for pulse test

⚫ Transition from Analog to Digital domain at the Inverter

⚫ Analog power/ground has dedicated connections in the chip peripheral
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◼ Geometry parameter optimized for small pixel pitch

⚫ Indicated in the diagram as d, s1, s2, s3

◼ PDD “Modified” has the BNW3/BPW2 removed

⚫ Lower diode capacitance than PDD “Standard”

Sensing diode design
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d

s1

s2

s3

d s1 s2 s3

Standard 2.8 um 2 um 1.5 um 1.5 um

Modified 2.8 um 2 um N/A N/A

Diode capacitance measured on CPV-3 chip



Bias of sensing diode

◼ Bias voltage on the PDD nodes

⚫ +1.4 V @ Vreset to set the DC voltage of input node

⚫ -4 V @ VBPW to reduce the diode capacitance

⚫ -10 V ~ -200 V @ P-sub for charge collection

◼ Cd dominated by the BPW/BNW junction

⚫ 5 ~ 8 fF @ reverse bias = -4.9 V
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◼ Transistor threshold shifted due to back-gate effect

⚫ ΔVt = k Vback (k ~ 0.02, Vback = Vbpw)

◼ ΔVt measured by KEK and modeled in HSPICE

⚫ +50 mV @ Vbpw = -4V for NMOS

⚫ -70 mV @ Vbpw = -4V for PMOS

Amplifier

VBPW = -4V

P-sub = -10 V

Cd

Vreset = +1.4 V

reset diode
ΔV = +0.5 V

Input node
+0.9V

BNW



◼ ΔVIN < 0 → ΔVg_M3 < 0 → VOUT_A charged by -∆IM3 → CS charged by ITHR → Vg_M3 restored→ VOUT_A restored 

◼ Peaking time = ΔVOUT_A  COUT_A / -0.5 ∆IM3 = -ΔVIN  CS / ITHR ~ us

◼ ∆𝑉𝑂𝑈𝑇_𝐴 =
𝑄𝐼𝑁

𝐶𝐼𝑁

∙ 𝑽𝑮𝑨𝑰𝑵 =
𝑄𝐼𝑁

𝐶𝐼𝑁

∙ 𝐶𝑆

𝐶𝑂𝑈𝑇−𝐴

∙ 0.5
−∆𝐼𝑀

3

𝐼
𝑇𝐻𝑅

⚫ QIN / CIN ~ a few mV

⚫ CS / COUT_A ~ 50

⚫ -∆IM3 / ITHR , 1.5 ~ 2 @ small signal

◼ OUT_D passes HIT threshold when 

VOUT_A = Baseline + ∆VOUT_A > VT_M9

⚫ Baseline = VCASN - VT_M5 = 710 mV

⚫ ∆𝑉OUT_A > 100 mV

Analog Front-end
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∆IM3
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Original design from the ALPIDE chip for the ALICE tracker upgrade, very low current,
reported on TWEPP 2016 by Thanushan Kugathasan, CERN
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Mitigation of back gate effect (shifted VT)

◼ Current mirror biased @ BPW = -4V in the peripheral

⚫ VT shifted by the same amount as that of the current source (M0, M4, M7) in pixel

◼ Other pixel transistors

⚫ Compensated by gate voltage
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Original design from the ALPIDE chip for the ALICE tracker upgrade, very low current,
reported on TWEPP 2016 by Thanushan Kugathasan, CERN
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Simulation

◼ Threshold ~ 85 e- @ ITHR = 0.5 nA and VOUT_A

baseline = 0.71V

⚫ Gain = 2.6 mV / e-

◼ Noise voltage @ VOUT_A = 3.5 mV

⚫ ENC = 1.3 e-

◼ VOUT_D pulse duration < 6 us

⚫ Time walk < 1 us, still an essential capacity to 
exploit to provide timestamps and reject the hits 
from radiation background as many as possible 
(offline)

⚫ Hit to be registered at the leading edge
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Transient waveform of VOUT_A

Input charge 10 ~ 160 e

Transient waveform of VOUT_D

Input charge 10 ~ 160 e



Pixel logic

◼ D-latches for Mask and Pulse configuration

◼ D-flipflop to store the hit pulse

⚫ Trigger mode: only hit pulses that coincided with external Strobe pulse

⚫ Continuous mode: all hit pulses with constant strobe = 1

◼ Time of hit can be derived offline

⚫ Either from the Strobe window (plus 2 × hit pulse duration, 2 × 6 us)

⚫ Or from the time stamp attached in the peripheral (plus time walk of hit pulse, 1 us)
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Sparsified readout of Matrix

◼ Hit Readout and Reset scheme following the ALPIDE design (100 ns / pixel hit)

⚫ HIT address encoded: low bits from the columns and high bits at the EoC

⚫ SYNC signal decoded in the reverse way, to clear the HIT bit

◼ Freeze the pixels to prevent possible interruption of readout sequence

⚫ Synchronized with the readout sequence

⚫ Applied to one double-column at a time,

to minimize overall dead time
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Asynchronized Encoder and Reset Decoder (AERD)
*Ping Yang et al., NIMA 785 (2015) 61-69
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◼ Pixel pitch: 17 um × 21 um (compared to 16 um × 20 um in CPV-3 with only amplifiers in pixel)

◼ Sensing diode guarded against the dynamic part of Analog Front-end

⚫ To minimize the electric coupling between them

◼ Pixel logic and AERD by manual drawing, 110 transistors / pixel on average

Layout of Pixel Array
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3D bumps marked with 

CPV4_Lower (2 × 2 pixels)

3D bumps marked with 

CPV4_upper (2 × 2 pixels)
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logic
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logic
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◼ Single chip area: 4.45 mm × 4.45 mm, with sensor guard-rings included

⚫ Pixel array 128 rows × 128 columns, covering 2.2 mm  × 2.7 mm

⚫ Peripheral circuits: current mirror, pulse generator / AERD EoC, I/O interface logic  

⚫ Alignment marks for 3D stacking

Layout of full chips
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CPV-4_Lower CPV-4_Upper

Alignment 
mark

Pixel Array
128 rows × 128 col.s

Pixel Array
128 rows × 128 col.s

PeripheralPeripheral

Alignment 
mark



Manufacturing and 3D processing

◼ CPV-4_L and CPV-4_U submitted to SOI foundry in Dec. 2020

⚫ Single chips delivered in June 2021

◼ 3D integration done by T-Micro in Japan

⚫ Chip-to-chip, staring from one single wafer

⚫ 3D chips delivered in the summer 2022

CPV-4_U

CPV-4_L

Layout of CPV-4_L

Layout of CPV-4_U
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CPV4_L/U on the WMP Wafer 



Measurement of 3D connection to upper tier

◼ Probe test on the 3D chips: from 3D bond pad to the upper tier

⚫ Measure the resistance between two power pads (DVDD) or two ground pads (DVSS) 

⚫ 2 ~ 6 Ω, electrical connection established

⚫ Yield 100% on 3 tested chips

DVDD to upper

DVSS to upper

Front End Electronics, Torino19

Probed DVDD/DVSS pads on 3D chipsDVDD or DVSS
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Tests on the upper tier

◼ Logic interaction with an FPGA readout board

⚫ Write to pixel configuration bits

⚫ Injection of digital test pulse and hit readout

◼ One 3D chip was found fully functional so far

⚫ A couple more chips partially functional

◼ Necessity of topside electrode is under study

⚫ To define the back gate conditions for the upper tier

Hit map of the full matrix in digital pulse test, 
with masked pixels and noisy pixels visible.

Front End Electronics, Torino20
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Measurement of 3D connection to lower tier

◼ Probe test on the 3D chips: from 3D bond pad to the lower tier

⚫ Measure the resistance between two analog power pads (AVDD) or two analog ground pads (AVSS) 

⚫ Hundreds of  kΩ, poor connections

⚫ Yield 30% on 3 tested chips

◼ Fortunately, some other chips were found functional

⚫ Analog Front-end was tested

AVSS to lower

AVDD to lower

Front End Electronics, Torino21

AVDD or AVSS

P+
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Handle Wafer
P-

3D bond pad3D bond pad

Power Ring

Probed DVDD/DVSS pads on 3D chips



Tests on the current mirror

◼ Current mirrors in Lower Tier worked properly

⚫ Verification of the vertical connection to the lower tier

◼ Measurement on 12 different monitoring channels (IOUT)

⚫ With design values ranging from 4 nA to 100 nA

⚫ All set to the target value with back-gate biased @ VBPW = -4 V

Lower Tier Via5

Micro bump

Upper Tier Via5

Bond pad
Potentiometers
on chip board

Wire 

bonding

Current mirror

Electrical connection to the current mirror in lower tier
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◼ Injected test pulses and observed waveforms @ VBPW = -4V

⚫ Baseline of VOUT_A = 750 mV (calibrated for the buffer chain) @ VCASN = 1.52V 

⚫ Threshold charge =  103 e @ ITHR = 0.5 nA

⚫ Gain = 1mV / 1e with amplitude @ threshold

⚫ Noise = 4.5 e- from s-curve measurement

Tests on the Analog Front-end

Analog frontend @ VBPW = -4V
Test charge injected ~ 150 e-
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◼ Estimate of time walk on VOUT_D ~ 2.4 us

⚫ Maximum delay 3.5us @ 150 e-

⚫ Minimal delay 1.1us @ 600 e-

⚫ Pulse width greater than in simulation, IBIAS, ITHR, IDB set to twice the nominal value

Tests on the Analog Front-end
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Ch1: 200 mV / div
Ch2: 1 V / div
5 us / div

Analog frontend @ VBPW = -4V
Test charge injected ~ 150 e-

Analog frontend @ VBPW = -4V
Test charge injected ~ 600 e-

Ch1: 100 mV / div
Ch2: 1 V / div
5 us / div

3.5
us

1.1 us

VOUT_A

VOUT_D

VOUT_A
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Summary and outlook

◼ 3D chip-to-chip bonding being pursued for high granularity of pixel with complex functionality

⚫ Micro bump pitch down to  7um, providing multiple connections in pixel level

⚫ Compatible with the existing SOI process, including low temperature stacking, TBV, thinning

◼ First trial of CPV-4 finished with encouraging results

⚫ A few samples with lower and upper tier operational

◼ Investigation of 3D connection yield will continue on the second wafer

⚫ Process tuning with T-micro based on the present results
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Backup slides
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Specification of Vertex detector

◼ high spatial resolution, low material budget and fast readout required by the flavor tagging

⚫ Pixel sensor, the core part to construct a vertex detector

m
GeVp

mr 


  23sin)(

10
5 =

Impact parameter resolution                Vertex detector specs                        Pixel sensor specs      

σs.p. ~ 2.8um Small pixel ~ 16um
Material budget ~ 0.15% X0/layer    Thinning to ~ 50um

low power ~ 50mW/cm2

r of Inner most layer ~ 16mm fast readout ~ 1us
radiation tolerance ~ 

≤3.4 Mrad/ year 
≤6.21012neq/ (cm2 year) 
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Readout Architecture
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Sync<1>
Sync<2>
Sync<3>

Priority Logic

Fast-OR

Reset 
Decoder

Address
Encoder

State<0>
State<1>
State<2>
State<3>

Valid

Address<1:0>

Sync

Priority Logic

Fast-OR

Reset 
Decoder

Address
Encoder

State<0>
State<1>
State<2>
State<3>

Sync<0>
Sync<1>
Sync<2>
Sync<3>

Valid

Address<3:2>

Address<1:0>

…

D        Q

G

D        Q

C

CLR

D        Q

G  CLR

Mask_en_x

Strobe

Grst

AERD_COL0

AERD_EOC

Read
Sync

Freeze

Sync

Freeze

Pixel

TWEPP 2023, Calaserena Village30



Design flow

◼ Conventional SOI tape-out plus a special 3D add-on process

⚫ 3D related rules integrated into the EDA tools

⚫ On the basis of single layer SOI design flow

stack-up of 3D layers

flow chart of SOI-3D design
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Schematic, Layout

General DRC, LVS

Stacking

Schematic, Layout

General DRC, LVS

Stacking

3D VIA Gen.

3D_LVS
（Virtual connect）

3D
DRC/LVS rules

3D_DRC & 3D_LVS2
(Direct connection)

Dummy bump Gen.

Upper-tier
port

Lower-tier
port

MET5(upper)

PV(upper):VIA

ZC1(upper):UBM

ZC6(upper): Bump

ZC6(lower): Bump

ZC1(lower):UBM

PV(lower):VIA

MET5(lower)
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Chip-On-Chip bonding

◼ Tape-out at LAPIS and 3D-bonding at T-Micro

⚫ All the data stored in a single GDS file, including the 3D layers

◼ Multiple reticles firstly diced from a dedicated wafer (but still MPW)

⚫ for the formation of Via 5, UBM, Au-Bump

◼ Single chip diced again for

⚫ Stacking, Glue injection, Thinning, Bond pad

SOI MPW Mask
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◼ Au cylindrical (hollow) bump on top of MET5 (top metal)

⚫ Thin wall of Au ~ 100 nm

⚫ Bump resistance 0.3 ~ 0.4 Ω

◼ Features large bonding margin and low temperature

⚫ Cylindrical bumps easy to deform (self-adapted to variation of bonding gaps)

⚫ Process temperature < 200 °C

Micro bump

P+

Al

Handle Wafer

n+ n+

P-

BOX

CMOS
Circuit

Sensor

Au Cylinder Bump (3.5 um ϕ)

Au Under Bump Metal (5 x 5 um2)

Via 5

SEM image of Au micro-cylinder bump Bump Resistance (0.3 ~0.4 Ω)

Processed by T-Micro
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Design for test

◼ Configuration of Bond pads and IO buffers

⚫ Original bond pads remained on both lower and

upper chips, accessible before 3D integration

⚫ Functional IO buffers always stacked up with

dummy IO to avoid conflicts of buffers

◼ Internal signal waveform are routed out of

test pixels with buffers for oscilloscope

observation

⚫ Critical node in the analog front-end

⚫ Two-stage buffers: Source-Follower and

Operational Amplifier

Configuration for the access to lower tier(left) and upper tier(right)

SF

OA

pix(0,1)  pix(1,4)  pix(0,5)  pix(1,7)  pix(0,9)  pix(1,11) pix(0,13) pix(0,15)

Oscilloscope

MUX
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