Characterization of the ATLAS Liquid Argon Front-End ASIC ALFE2 for the HL-LHC upgrade

G. Carini¹, H. Chen², G. Deptuch¹, L. Duflot³, J. Kierstead¹, T. Liu², H. Ma², M. Dabrowski⁴, <u>D. Matakias²</u>, N. Morange³, S. Rescia¹, S. Tang², H. Xu²

1. Instrumentation Division, Brookhaven National Laboratory, Upton, NY, USA

2. Physics Department, Brookhaven National Laboratory, Upton, NY, USA c

3. IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France

4. Formerly at Instrumentation Division, Brookhaven National Laboratory, now with KU Leuven

Topical Workshop on Electronics for Particle Physics (TWEPP) October 3rd, 2023 Geremeas, Sardinia, Italy

High Luminosity-Large Hadron Collider upgrade

- HL-LHC upgrade with an increased 7x instantaneous luminosity is scheduled to begin operation in 2029.
- ATLAS Liquid Argon calorimeter electronics will be upgraded for higher data rates (220 Gbps/FEB2 vs 1.6 Gbps/FEB) and increased radiation hardness

LHC and HL-LHC plan

ATLAS Liquid Argon Front-End ASIC

The ATLAS LAr (Liquid Argon Calorimeter) Front-End (ALFE2) is an ASIC for the ATLAS LAr Calorimeter

- 4-channel pre-amplifiers (PA) and CR-(RC)² shapers
- Trigger sum output
- BGA package 196-pin, 0.8 mm pitch, 12 mm x 12 mm

- ~80k chips will be produced
- 1,524 Front-End Boards, 32 chips and 128 channels per board
- Higher trigger rates (1 MHz vs 100 kHz)
- Higher radiation tolerance

ALFE2 overview

ALFEO

Dual-ch with $Zin = 25 \Omega$

- Low noise (ENI ~ 150 nA)
- Low non-linearity (< 0.1%)
- Fully differential preamp architecture

Nov 2018

4.90 mm

ALFE1

 Zin, peaking time, and baseline configuration

4.10 mm

 Channel power-down capability

Nov 2019

- Trigger sum
- SEU-tolerant I2C interface
- DACs
- BGR

March 2021

ALFE2 features

- 16-bit dynamic range (DR) on signal reconstruction and energy resolution requirements
- Each channel has a High-Gain (HG) output and a Low-Gain (LG) output simultaneously
- Reconfigurable (I2C slow control interface)
- Radiation tolerance:
 - Triple modular redundancy TMR
 - \circ \quad Auto-refresh to correct errors by single event effects

Specifications			
Zin	25 Ω or 50 Ω configurable		
Noise	ENI < 350 nA at $T_{p (5\%-100\%)}$ = 46 ns (25 Ω HG) ENI < 120 nA at $T_{p (5\%-100\%)}$ = 38 ns (50 Ω HG)		
Gain	High Gain / Low Gain ratio: 22 ± 5		
INL	± 0.2% on High Gain output ± 0.5% on 80% of Low-Gain dynamic range ± 5% on 100% LG full dynamic range		
PSRR	10 dB up to 1 MHz		
Power	650 mW		
Radiation	TID 140 krad, SEE h/cm2 1.0 x 10 ¹³		

ALFE2 Channel | Architecture Advantages

- Key block enabling very low-noise performance & high linearity is the Pre-amplifier, which is implemented by means of a Fully-Differential Amplifier (FDA) enclosed in an asymmetric differential feedback [1].
 - FDA is implemented with inverter-based input pair [2], which gives $\sqrt{2}$ noise improvement vs traditional FDA (implemented e.g. in [1])
 - FDA is multi-power-domain with input pair biased at 1.2 V and output stage at 2.5 V. This allows (1) minimization of power consumption and (2) increase of transimpedance gain (R_F), which reduces noise contribution from the shaper.

Key PA & Channel Architecture advantages:

- Signal flows only through passive components
 - Very linear & very stable termination
- Fully-differential architecture
 - Doubles the voltage swing (reduction of noise from the shaper)
 - FE much less sensitive to common mode noise e.g. from input pair current sources, power supply or coupling on the PCB

G. De Geronimo et al, "HLCI: A Front-End ASIC for Liquid Argon Calorimeters," 2017 IEEE NSS/MIC, Atlanta, GA, USA, 2017, pp. 1-3, doi: 10.1109/NSSMIC.2017.8532699.
 M. Dabrowski, "Fully Differential Rail-To-Rail Output Amplifier with Inverter-Based Input Pair", US Patent US11336244B2, May, 2022

Test Setup

- A Front-End Test Board (FETB) was designed, based on Enclustra Mercury XU1 (Xilinx's Zynq Ultrascale+™ MPSoC)
- Integrates 2x 8ch, 16-bit ADCs with 13-bit ENOB, 125 MSPS (TI ADS52J65)
- Runs Petalinux for data taking and analysis
- Has an Ethernet interface for radiation testing
- Used for both characterization, QC tests and irradiation tests

Test results - power consumption

- Average power consumption is \sim 610 mW, matches simulation results.
- Analog channels can be powered off individually.
- All chips measured meet the specification.

Specifications	Measurement
650	610 ± 11
Power (mW)	(mean ± σ)

Histogram of the total power consumption of ALFE2 (120 chips)

ALFE2 test results - Noise, gain

- Measured equivalent noise input (ENI) at reference conditions, with input protection network installed, including ADC contribution:
 - **~170 nA**, 25 Ω mode
 - ~50 nA, 50 Ω mode
- The measured performance greatly exceeds specification requirements.

	Specifications		Measurement
Noise	ENI < 350 nA at T $_{p}^{5-100}$ = ENI < 120 nA at T $_{p}^{5-100}$ =	~170 nA ~50 nA	
Gain	High Gain / Low Gain ra	~22.5	
B	rookhaven	ENI definition:	RMS of pedestal run

ALFE2 test results - Linearity

- Measured using the IN2P3/OMEGA calibration pulser and a 16-bit TI DAC8830
- The measured performance meets specifications

Test results - input impedance

- The input impedance was measured with a network analyzer (HP 4395A).
- The measured performance meets the specifications.

Test results - Power Supply Rejection Ratio

- The power supply rejection ratio (PSRR) was measured with a network analyzer (HP 4395A).
- The measured PSRR is higher than 26 dB up to 1 MHz for all power rails.
- The measured performance meets the specifications.

Power supply rejection ratio measurement for 2.5V power rail

Test results - uniformity and yield

- 120 pre-production chips were tested, no errors on slow control interface observed
- 5 chips rejected with 3 sigma stringent rules. ~96% yield
- All 120 chips meet the specifications

ALFE2 Radiation testing

- ⁶⁰Co gamma ray source, at Brookhaven National Lab
- Real time monitoring of temp, voltages, chip performance and slow control interface
- 10 kRad/h
- 10x of the target dose
- < 1% performance change observed

Radiation tolerance with safety factors				
	TID [kGy]	NIEL [n _{eq} /cm²]		
ASIC Barrel ASIC Endcaps	1.4 0.21	4.1 x 10 ¹³ 6.0 x 10 ¹³		

Test results - Single Event Effect (SEE) Test

- An SEE test was conducted in Massachusetts General Hospital in Boston in April 2023.
- Internal registers of ALFE2 were continuously written/read in the 226 MeV proton beam.
- Seven chips were tested (4 with auto-refresh on, the other 3 auto-refresh off).
- No errors observed with auto-refresh on. The estimated cross-section:
 < 1.35x10⁻¹⁶ cm²/bit (combined, 95% confidence level)
 Extrapolated error rate for the entire ATLAS LAr calorimeter: < 5 errors per day (95% CL)

Summary

- ALFE2 is developed for ATLAS LAr Phase-2 upgrade and characterized with the Front-End Test board
- ALFE2 design meets and exceeds all requirements for the ATLAS LAr Calorimeter in the HL-LHC upgrade
 - \circ Measured ENI ~170 nA for 25 Ω mode, ~50 nA for 50 Ω mode (Spec: 350 nA / 120 nA)
 - \circ $\,$ Measured INL < 0.6% for Low Gain, < 0.15% for High Gain $\,$
 - \circ \quad Trigger summing output working as expected and meets all specifications
 - Power consumption is 610 mW (spec 650 mW)
- TID tests were completed with ⁶⁰Co gamma ray source. <1% performance change observed with doses exceeding 1.5 MRad (10x times the spec)
- SEE test was completed with no errors observed when the auto-refresh feature was on. The extrapolated error rate for the entire ATLAS LAr calorimeter is < 5 errors per day (95% CL)
- The evaluation of pre-production chips is completed. Production is expected to start in the coming month.

Backup slides

Test results - Trigger sum - INL

- INL requirement for trigger sum: ± 2%
- The measured performance meets specifications

0.50 Non-linearity [%] 0.4 nonlin = 0.235% [0.50 mA] Non-linearity [%] nonlin = 0.093% [2.48 mA] 0.2 0.25 0.0 0.00 -0.2-0.25 -0.4-0.502000 Amplitude [mV] Amplitude [mV] SUM Fit: 0.36 + 560x SUM Fit: -0.09 + 3294x 1500 1500 1000 1000 500 500 Beaking Time [ns] 39.5 39.0 38.5 +3e1 mu = 39.04 ns, sigma = 0.19 ns Peaking Time [ns] 0.8 mu = 30.32 ns, sigma = 0.13 ns 0.6 0.4 0.2 0.0 -0.2 0.5 1.0 1.5 2.0 2.5 0.2 0.5 0.0 0.1 0.3 0.4 0.6 Injection Current [mA] Injection Current [mA] 18

25 Ω , 270 Ω injection resistance

50 Ω , 1300 Ω injection resistance

Test results - Trigger sum - Channel uniformity

- Requirement for gain uniformity of the channels summed: < 5%
- The measured performance meets specifications

Front-End Test Board and ALFE2 socket

PSRR measurement test setup

SEE test setup

Beam outlet

- Particle : 226 MeV proton
- Beam diameter: 1.5 cm
- Flux: 7E9 3.5E10
 p/cm²/s

Power: PSRR measurement on ALL RAILS, outputs 25 Ω and 50 Ω

This plot shows all PSRR measurements for:

- VDD1P2_PA
- VDD2P5_PA
- VDD1P2_SH

Both 25 Ω and 50 Ω configurations, high gain, low gain and trigger sum outputs were tested.

