Test results of ECON-D and ECON-T, the concentrator ASICs for the HGCAL front-end readout

Cristina Mantilla Suarez, on behalf of the CMS collaboration

TWEPP 2023 October 2nd 2023

ECON team and contributors

The ECON design team

FNAL/LPC: Jyoti Babbar (Panjab), Bhim Bam (Alabama), Davide Braga, Alex Campbell (Alabama), Grace
Cummings, Cristinel Gingu, Mike Hammer (Argonne), James Hirschauer, James Hoff, Neha Kharwadkar, Pam
Klabbers, Danny Noonan, Paul Rubinov, Alpana Shenai, Cristina Mantilla Suarez, Chinar Syal, Xiaoran Wang,
Ralph Wickwire
FESB/Split: Duje Coko
CERN: Gianmario Bergamin, Davide Ceresa, Szymon Kulis, Matteo Lupi, Simone Scarfi'
Baylor: Jon Wilson

Thanks to the lpGBT team

eRX: Di Guo (SMU), Datao Gong (SMU), Jingbo Ye (SMU), Paulo Moreira (CERN)
ePortRxGroup (phaseAligner, ePortRx): Dongxu Yang (SMU), Szymon Kulis (CERN), Datao Gong (SMU), Jingbo Ye (SMU), Paulo Moreira (CERN)
IjCDR (LJCDR and ser640Mto10G24): Jeffrey Prinzie (KUL), Paul Jozef Leroux (KUL), Rui De Oliveira Francisco (CERN), Pedro Leitao (CERN), Szymon Kulis (CERN), Paulo Moreira (CERN)
eTX: Paul Jozef Leroux (KUL), Bram Feas (KUL), Paulo Moreira (CERN)
Thanks to the hls4ml team

Concentrating readout data in the HGCAL front-end readout

7

7

Trigger Path Stage	# channels
Raw data	6M
HGCROC (hardware)	1 M
Threshold (ECON selection)	1 M

Cristina Mantilla Suarez (Fermilab)

300 Tb/s

40 Tb/s

 $\times 1$

 $\times 7$

60k

9k

ECON requirements in the front-end

5.315 x 5.315 mm²

Cristina Mantilla Suarez (Fermilab)

5.19 x 5.19 mm²

Parameter	Specification
ECON-T Latency	$\leq 0.4 \mu s$
wer Consumption	\leq 2.5 mW/channel (each)
Voltage range	$1.2 \mathrm{V} \pm 10\%$
of input/outputs	12 inputs, 6-13 outputs @ 1.28 Gbps
al Ionization Dose	200 Mrad
SEE tolerance	Hadron fluence ($E > 20 \text{MeV}$)
	of $1 imes10^{14}\mathrm{cm}^{-2*}$

ECON-T

Reduces # of links by selecting charge data (*a*) 40 MHz

Physics performance of compression algorithms is key!

ECON-D

Zero-suppression, timeanalysis of error conditions, data-packet building @ 750kHz

More susceptible to loss of sync (e.g. via SEE)

ECON-T block architecture

ECON-T block architecture

Cristina Mantilla Suarez (Fermilab)

ECON-D block architecture

Testing Overview

- Focus on results from ECON-D-P1:
 - External IP remains the same as in ECON-T-P1
 - Common blocks are updated and will be used in final ECON-D and -T. -----
- **Comprehensive bench testing of both chips reveals no major issues**
 - Tested in radiation environment, voltage range and low temperature (-20°C)
 - Tested unpackaged and packaged chips (128 pin LQFP packaging)

-D-P1 /es	Final engineering run	
2023 parts	Nov. 2023 70k parts Includes P2 revisions	Robot testing upcoming in 2024

Emulator-based testing

Validate main functionality via **data stream comparison**:

- ASIC output compared bit-for-bit in real time to emulator output
- emulator validated against spec. and independent python-based emulation of behavior -

Drives inputs to ECON chips (with HGCROC format)

Fast commands, slow control and input clock provided by FPGA

ECON powered at 1.2V with external power supply

	Block	Functionality
N	I ² C	Write and readback regist
	PUSM	PLL lock
hourd		DLL lock
-board	Fast control	Fast command respo
	ePortRxGrp	Bit alignm
5	Aligner	Synchronization with HGCR
	C	Stability over t
2	ECON-T-P1	Compression algorith
ECON~D_test V1 P.Rubinov	main functionality	for many configurations (e.g. # of lir
272023 J2	ECON-D-P1	Event packet build
	main functionality	L1A respo
		-

PLL performance

ECON uses lpGBTv1 PLL based on LC-tank VCO with adaptations for ECON's 9-layer metal stack

- ECON-D-P1: Extra AP metal layer over PLL reduces magnetic flux through VCO's inductor and increases the frequency of the VCO
- PLL locking range ~ 41.5-49 MHz (does not lock at 40 MHz)

ECON-T-P1

ECON-D-P1

PLL design for ECON-D-P1 and ECON-T-P1

PLL performance

ECON uses lpGBTv1 PLL based on LC-tank VCO with adaptations for ECON's 9-layer metal stack

- ECON-D-P1: Extra AP metal layer over PLL reduces magnetic flux through VCO's inductor and increases the frequency of the VCO
- PLL locking range ~ 41.5-49 MHz (does not lock at 40 MHz)
- Removal of extra layer (e.g. via focused ion beam FIB) recovers locking range (at 40 MHz)

ECON-T-P1

ECON-D-P1

ECON-D-P1 FIB

PLL design for ECON-D-P1 and ECON-T-P1

Phase alignment in ePortRx

- ePortRx: Internal check of PRBS 32-bit word errors as the phase delay setting* changes manually. - FPGA-related jitter reduces width of good phase region

 - Similar results obtained for ECON-T-P1 and ECON-D-P1
- Automatic modes of phase selection (e.g. continuous phase tracking) select in the error-free region.

Cristina Mantilla Suarez (Fermilab)

Data output and jitter measurements

- over output delay settings.
 - Test also allows to detect issues in FPGA links in the test system. -
- Jitter meets specification requirements (<15 ps)

QC characterization: each eTx routed to the test board via 2 programmable delay lines in the FPGA: scan

Early QC testing the ECON ASICs

Power consumption @ 1.2 V

Varies with number of output channels, algorithm (ECON-T), L1A rate (ECON-D) and buffer occupancy

- ECON-T-P1: Nominal 380 mW, Max 450 mW
- ECON-D-P1: Max 400 mW
- Adheres to specification: < 2.5 mW per channel

Early QC testing the ECON ASICs

Power consumption @ 1.2 V

Varies with number of output channels, algorithm (ECON-T), L1A rate (ECON-D) and buffer occupancy

- ECON-T-P1: Nominal 380 mW, Max 450 mW
- ECON-D-P1: Max 400 mW -
- Adheres to specification: < 2.5 mW per channel

C tests for	Test	# Failed	Yie
	Power draw	0	100
$\mathbf{N}-\mathbf{I}-\mathbf{P}\mathbf{I}$	I ² C Read and write	1	> 99
1 1	PLL locks	3	> 92
ckaged parts)	eRx/eTx eye width, test-bench issues*	4-11	91 — 9
	ECON-T-P1 OC test	(180 parts)	

*characterization in progress

Early QC testing the ECON ASICs

- ECON-T-P1: Nominal 380 mW, Max 450 mW
- ECON-D-P1: Max 400 mW
- Adheres to specification: < 2.5 mW per channel

C tests for	Test	# Failed	Yie
	Power draw	0	100
N-I-PI	I ² C Read and write	1	> 99
olzaged norta)	PLL locks	3	> 97
chaged parts)	eRx/eTx eye width, test-bench issues*	4-11	91 - 9
	ECON-T-P1 QC test *charac	: (180 parts) cterization i	in prog
ing range for			
	$ \begin{array}{c} \neg \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		′ -
Pl (non-FIB)			
alzagad nanta)	0 5 40		-
ckaged parts)			_
			_
	20-		_
			_
	44.0 44.5 45.0 45.0 Midpoint of PLL Frequency Locking	Range (MF	5.U 17)
	S Width~ 8.7 MHz		
	0 40 - 0 -		
	$\frac{O}{O}$ 20		
	Ϋ́ _o [[]		
	8.0 8.2 8.4 8.6 Width of DLL Eroquanov Looking	8.8 9 Rango (M/L	.0 17)
	WIGHT OF I LET TEQUETCY LUCKING	i lange (ivil	12)

gress

Radiation hardness and SEE protection

- 65 nm LP process.
- ECON-D-P1:
 - All blocks (except SRAMs) are fully triplicated (registers, voters, clocks)
 - Use hamming code to protect byte 0 in SRAMs (determines output frame size)
- ECON-T2 and ECON-D2 will have identical periphery and TMR (following ECON-D-P1)

	Total Bytes	TMR	Auto-Correct	ECC	
ECON-T-P1					
Data		FF	No	No	
I ² C peripheral	675 bytes	FF	Yes	Yes	Error-Correction-Codes (ECC)
I ² C (NN Encoder)	1608 bytes	FF, logic, clock	Yes*	No	only included for ECON-1-P1
ECON-D-P1					
All blocks (except SRAM)		FF, logic, clock	Yes	No	TMRG-based flow for
I ² C	8292 bytes	FF, logic, clock	Yes	No	ECON-D-P1

https://tmrg.web.cern.ch/tmrg/

*TMR refresh runs at 156kHz which is one correction every 6.4 us, or once per spill 13

1 ECON-T-P1 tested May 2022

- Observations:
 - -

2 ECON-D-P1 tested Aug 2023

HL-LHC expected ECON-T-P1 (May. ECON-D-P1 (2 \times

Cristina Mantilla Suarez (Fermilab)

2 separate campaigns for ECON-T/ECON-D:

Beam: 217 MeV protons

HGCAL requirement: 1e14/cm² high energy hadrons

No misbehavior requiring reset and no SEU in I²C registers, for both ECON-T and ECON-D.

Set upper limit on cross section of errors requiring reset.

	Flux (/cm²/s)	Fluence (/cm ²)	σ _{reset} (cm²/ECON) 95% CL limit	Period ^{**} (min./error) 95% CL limit
1 *	$3 imes 10^6$	$1 imes 10^{14}$		
. 2022)	$5 imes 10^9$	$4 imes 10^{12}$	$<7.45 imes10^{-13}$	> 0.8
Aug. 2023)	$3 imes 10^{10}$	$1 imes 10^{14}$	$< 3 imes 10^{-14}$	> 13
0		$5 imes 10^{13}$ (per chip)		

* averaged over all HGCAL

** for entire HGCAL : 27k ECON-D, 20k ECON-D

Limit on period between errors requiring reset: better for ECON-D-P1 because of larger test fluence.

- ECON-D-P1: estimated bit error cross section from internal monitoring of TMR counters

Cristina Mantilla Suarez (Fermilab)

ECON-D-P1: estimated bit error cross section from internal monitoring of TMR counters

Cristina Mantilla Suarez (Fermilab)

TID testing

ECON-T-P1 Oct 2022 2 chips irradiated

- TID campaigns for ECON-T/ECON-D at CERN ObeliX X-ray: HGCAL requirement: 220 Mrad
- TID test: 660 Mrad/chip
- Observations:
 - Good behavior up to 660 Mrad, 1.2V
 - Evidence of small error rate (>450 Mrad for ECON-D-P1), 1.08 V

ECON-D-P1 Aug 2023 3 chips irradiated (1 with FIB modification)

Cristina Mantilla Suarez (Fermilab)

Dose: ~ 9.2 Mrad/hour Temperature: -20°C

Chip 7: had FIB modification

ECON status summary

- All ECON-T and ECON-D P1 features (tested so far) are functional
 - Few bugs found, being fixed for the production run (Nov. 2023)
 - Verified functionality of standalone blocks and blocks using the lpGBT IP:
 - PLL issue with extra metal layer: ECON-D-P1 operates at 41-49 MHz.
 - Prototype run with mask respin will provide prototypes with corrected top metal (and good locking range) TID and SEE campaigns carried out successfully for both
- chips.
- Functionality of ECON-T and ECON-D P1being exercised in HGCAL test systems!

ECON-T-P1 in test system

Mezzanine with ECON-T-P1 and ECON-D-P1 (FIB modified)

Backup

PLL locking range

Clocks and resets block

ECON-T-P1 limit

About 50% of ECONs have fluence of 0.02 x 10¹⁴ A few 0.1% of ECONs have fluence of 12 x 10¹⁴ The average fluence is 0.95×10^{14}

The ECONs at the highest fluence will have a potential period of resets that is $\sim 12x$ higher than the average rate

ECON-T-P1: measurements of SEU cross section/bit: internal monitoring of ECC error counters and data stream.

- ECON-T-P1: observed SET in serializer :

- 32-bit shift registers were triplicated but not self-correcting
- SEE introduced additional signals to begin serializing the 1.28 GHz clock
- Full re-design of serializer for ECON-T-P2.

self-correcting erializing the 1.28 GHz clock

