
TWEPP 2023
October 1-6, 2023

In-pixel AI for lossy data
compression at source
for X-ray detectors
Danny Noonan (1), Davide Braga (1), Giuseppe Di Guglielmo (1,2), Priyanka Dilip (1),
Farah Fahim (1,2), Panpan Huang (2), Chris Jacobsen (2), Seda Ogrenci (2), Adam
Quinn (2), Nhan Tran (1,2), Manuel B. Valentin (2), Thomas Zimmerman (1)
(1) Fermilab
(2) Northwestern University

1

Introduction

• Fast frame-rate, higher resolution detectors are essential for improving performance of X-ray microscopy
techniques

• Pixelated front-end readouts are hitting data I/O bottleneck

• Single 400x400 pixel chip, with 10-bit ADC, operating a 1 Mfps, generates 1.6 Tbps of data

• Frame rates become limited not by time to integrate and digitize data, but by off-chip data transfer

• For operating without dead-time, data transfer needs to occur at same rate as digitization

• Transferring O(Tbps) off detector is not feasible

• Need data reduction on-chip

• AI-In-Pixel-65
• Test chip for pixelated read out of X-ray detectors (specifically targetting X-ray ptychography)

• Capable of 50-70x lossy data compression

• Data compression performed within pixel area rather than chip periphery

2

X-ray Ptychography

• X-ray microscopy technique

• Computationally reconstruct

image of a specimen

• Diffraction patterns collected

over scan of specimen

• Collects large amounts of data

• Sampled in overlapping positions

• Redundancy in data lends itself to
be suitable for data compression

• Compression techniques already

common for off-detector storage
Pfeiffer, F. X-ray ptychography. Nature Photon 12, 9–17 (2018). https://doi.org/10.1038/s41566-017-0072-5

3

Data reduction

• Reducing data volumes as close to the source as possible removes the data transfer
bottleneck

• Integrating data reduction schemes into Read-Out Integrated Circuits (ROIC)

• Various options available for data reduction at source:

• Data sparsification: zero suppression of data

• Potentially high overhead (16-bit addressing per pixel for 200x200 pixel array)

• May not provide much gain in noisy data (~60% zero pixels)

• Data compression:

• Principal Component Analysis (PCA)

• Machine learning based data compression through an AutoEncoder

4

AI-In-Pixel-65

• ROIC test chip

• Designed in 65nm Low Power CMOS

• Pixelated readout for X-ray detectors

• Pair of 32-by-32 pixel arrays with independent data
compression algorithms

• Signals digitized by 10-bit SAR ADC at 100k samples per

second

• Data-compression implemented in-pixel (rather than at

periphery)

• Pixel area of 55x55 µm2 with data compression implented

(expanded from 50x50 µm2 without compression)

• Two algorithms for data compression in each of two halves

• AutoEncoder

• Principal Component Analysis

5

Principal Component Analysis (PCA)

• Represent diffraction patterns as a linear combination of features

• Diffraction pattern from array of j pixels () can be represented
as product of eigenimages () and the corresponding
eigenvalues ()

• Eigenvalues can be calcuated inverting eigenimage matrix ()

• can be used to calculate eigenvalues on chip

• Since n << j, reading out eigenvalues instead of full array of

pixels reduces data

• Varying the number of eigenvalues used varies level of

compression

Dj
Rn×j

Pn

R−1
j×n

R−1

Dj = Pn × Rn×j

Pn = Dj × R−1
j×n

6

PCA
• Varying the number of eigenvalue/eigenimages effects the quality of the diffraction

patterns

• Compute Forrier Ring Coefficient (FRC) as a metric for quality of reconstruction images

• FRC compares similarity of two images (reconstructed vs original) at varying spatial
resolutions

• Optimize number of outputs and precision of weights and outputs based on quality
of image reconstruction

• With 30 eigenvalues, can maintain quality of sampled image

• With 30 eigenvalues at 7-bit precision, achieve 50x compression (1024 x 10-bit to 32 x

7-bit)

0.0 0.2 0.4 0.6 0.8 1.0
Spatial frequency (1 / Nyquist)

0.0

0.2

0.4

0.6

0.8

1.0

FR
C

S'
1
3
10
30
100
300
1000
3000

Diffraction patters, reconstructed with
different compression levels

7

AutoEncoder
• PCA matrix multiplication is essentially just a neural network dense layer

• Can we do the same, but using machine learning to determing the
weights?

• AE algorithm, uses same basic structure as PCA

• Fully connected dense layer

• Maintains 30-value latent space

• Trains encoder and decoder network simultaneously, compressing and

decompressing the image from the latent space

• Preprocessing of data from 10-bit ADC value into a 5-bit approximation of
square root

• Quantization aware training using QKeras

• Network can learn how to best make use of available precision

• 70x compression factor: 30 latent space values at 5-bit bit precision

Example AutoEncoder Network Structure

8

Algorithm Weight Comparison

• PCA and AE algorithms have same number of weights,
but very different scales and precision

• 30 x 1024 weights

• PCA:

• Requires 12-bit precision

• 77.98% zero-valued weights

• AutoEncoder:

• 6-bit precision in weights

• 8.69% zero-valued

• Difference in distributions of weights leads to different
implementation strategies

PCA Weights

Autoencoder Weights

9

Design Methodology
• Design goal of avoid moving data to periphery of ROIC

• Implement calculations in-pixel

• Leverage HLS (Siemens Catapult HLS) and hls4ml for implementation

10

Implemenation Issues

• Fully dense architectures present challenges
when with signal routing when performing the
compression “in-pixel”

• Congestion issues with initial 50 µm x 50 µm
pixel size

• Increase to 55 µm pitch relieves some of the

issues

• Changes to architecture choices in HLS to allow
for easier place and route

• Different strategies implemented for PCA and

AE optimization

Routing congestion in AE implementation

11

Congestion Improvements
• PCA:

• Unroll loops

• Take advantage of sparsity in weights to simplify accumulators (zero multiplications removed

in synthesis)

• Autoencoder:

• Refactor HLS code, allowing for module multiply-accumulate step, and pipelining the 30

calculations

• HLS code modifications to perform accumates among 4 neighboring pixels first, reducing

routing requirements

• With these changes, able to fit both compression into their respective pixelated area, with
different latencies for the two algorithms

AE PCA
Latency Area (mm2) Latency Area (mm2)

Modular 30 0.549 30 1.516
Inline 1 1.700 1 0.652

Distribution of MAC in pixelated area of AE

Area estimates for different HLS design choices

12

Summary
• AI-In-Pixel-65 demonstrates ability to perform data compression directly within a

pixelated front end read out chip

• Two algorithms explored for data compression,

• Principal Component Analysis: achieves 50x compression, 1 clock cycle of latency

• AutoEncoder: 70x data compression, 30 clock cycles

• Implementation strategies in HLS customized to needs of each algorithm

• These levels of compression would make larger and faster pixel arrays more feasible to
readout

• 400x400 pixels x 10b x 1 Mfps -> 1.6 Tbps data, becomes 32 Gbps with 50x

compression

13

BACKUP

14

HLS optimization for better layout routing

Initial “Channel Last” HLS implementation

1024 multiplier accumulators (MACs)

“Channel First” Implementation

Separated into 256 four-input MACs

15

