

Design and characterization of RD53C production chips for ATLAS and CMS pixel upgrades at HL-LHC

Luca Pacher

on behalf of the RD53 Collaboration

2023 Topical Workshop on Electronics for Particle Physics

Geremeas, Sardinia Italy

Oct 2, 2023

The RD53 collaboration on 65 nm CMOS technology

Initial mandate

- − **joint effort between ATLAS and CMS** established back in 2013 to develop new pixel readout chips for HL-LHC pixel detectors upgrades
- − 24 partecipating institutes (Europe + USA)
- − characterization of 65 nm CMOS technology in radiation environment
- − design of a rad-hard IP library (analog front-ends, A/D and D/A converters, CDR/PLL, high-speed serializers, RX/TX, ShuntLDO)
- − design and characterization of half-size pixel chip demonstrator with design variations (RD53A)

In 2018 the LHCC extended the collaboration for 3 years

- − design of full-size pre-production (RD53B) and production (RD53C) pixel chips for ATLAS and CMS experiments
- − ATLAS and CMS chips are two "instances" of a common ASIC design infrastructure with different size for mechanical integration and Analog Front-Ends according to specific requirements by the experiments
- − request to LHCC to further extend the collaboration by 3 years to ensure necessary support for testing and to experiments

RD53C organization

Collaboration board chair

Lino Demaria, Torino

Floorplan/integration:

Flavio Loddo, Bari

Analog front-ends:

Monitoring:

IO PAD frame

Hans Krueger, Bonn

Interface to experiments: Co-spokespersons Inreen Christiansen, CERN (CMS) Maurice Garcia-Sciveres, LBNL (ATLAS)

Experiment observers Duccio Abbaneo, CERN (CMS)

Kevin Finsweiler, J.BNJ (ATLAS)

RD53 design framework: Flavio Loddo, Bari, Tomasz Hemperek, Bonn

Digital: RTL, Design flow, P&R, Timing: Tomasz Hemperek, Bonn Roberto Beccherle Pisa CMS: Luigi Gaioni, Bergamo/Pavia: Luca Pacher, Torino ATLAS: Amanda Krieger, LBNL Simulation & Verification: Java John Oxford-Aikaterini Papadopoulou, LBNL Stefano Esposito, CERN Attig Rehman Bergen Design for testability: Mohsing Menouni CPPM-Giusenne De Robertis, Bari SELL/SET Rafael Girona, Seville Woiciech Bialas, CERN Fernando Munoz Chavero, Seville Serial Powering Michael Karagounis, Dortmund Ahraro Pradas (TAINNOVA)

IPs: Support and possible updates Current DAC: Rari **Voltage DAC: Prague** Bandgaps: Bergamo ADC, mux, temp: CPPM PH & serializer: Bonn Diff IO: Bergamo/Pavia Power on reset: Seville Ring oscillator: LAL Analog buffer: RAI

Testing

Organization: ATLAS: Timon Heim, LBNL, CMS: Stella Orfanelli, CERN Many RD53 and ATLAS/CMS groups: LBNL, Bonn, Oxford, CERN, CPPM, LAL, Torino, Aragon, ETH, Florence, Zurich . . . RD53 test systems: YARR (LBNL), BDAQ53(Bonn)

RD53 ASICs development

pacher@to.infn.it 2 / 20

Digital-on-top (DoT) approach:

- − common digital-centric design and verification framework referred to as RD53B
- RTL code and digital implementation flows parameterized in terms of "experiment flavour"
- − ATLAS and CMS chips are two different instances of the same common design
- different chip-size for mechanical integration and analog front-end according to specific requirements of the experiments
- − common digital synthesized logic
- unused experiment-specific additional features simply turned off by configuration

- Final RD53C-ATLAS (ITkPix_V2) production chip submitted on Apr 2023 and currently under test !

- Final RD53C-CMS (CROC_V2) production chip assembled and ready for submission !

Design requirements and chip specifications

- RD53B Design manual and user guides: https://cds.cern.ch/record/2665301 $\overline{}$
- RD53B requirements: \blacksquare

https://cds.cern.ch/record/2663161

Pixel ASIC functional overview

In short, extremely complex pixel readout ASIC designed to have a minimal I/O interface with the outside world with as fast as possible data links:

power

− input/output currents for serial powering

input data: commands, control and timing

- − one single 160 Mb/s differential serial input link used for all chip operations (synch/PLL lock and CDR, trigger, configuration commands, etc.)
- − no external clock, no external reset

output data

- − up to 4x 1.28 Gb/s CML output links for data readout (hit data $+$ service data) compatible with LpGBT
- − Aurora 64b/66b encoding

Logical design hierarchy

Pixel array

- $50 \mu m \times 50 \mu m$ pixel size, approx. 50% analog and 50% digital
- − digital logic synthesized for 8x8 pixels to form a pixel core
- − all cores are identical → efficient hierarchical verification and implementation
- − one digital readout block for each PixelCoreColumn in the chip periphery

Chip periphery

- Analog Chip Bottom (ACB): contains all analog and mixed-signal blocks (bias DACs, CDR/PLL, ADC etc.)
- Digital Chip Bottom (DCB): synthesized logic containing communication to/from the chip, readout and global configiration
- Common **padframe**: complex macro containing all I/O blocks with ESD protection and distributed Shunt-LDOs for serial powering

pacher@to.infn.it [TWEPP 2023](#page-0-0) 6 / 20

Floorplan and physical design hierarchy

Chip assembling strategy:

- − assemble "pixel core" (8x8 pixels) → abstract/Liberty
- − step-and-repeat cores to form a "column of pixel cores" (core-column) → abstract/Liberty
- − chip-periphery/top-level flat (historical choice)
- − assemble top-level (synthesized logic + hard-macros + complex padframe macro)

pacher@to.infn.it 7 / 20

Top-level layout with analog and M/S blocks

pacher@to.infn.it 9 / 20 and 2008 9 7 MEPP 2023

Selected implementation details

Serial powering

Both ATLAS and CMS will adopt the innovative serial-powering scheme

- − based on complex **Shunt-LDO regulators** inside the chip
- − one regulator for each power domain (1x analog + 1x digital)
- − constant input current shared among more chips (2-4) on the same module (less cables)
- − modules are in serial chains: "recycle" current from one module to another
- − in case of chip failure, its current can be absorbed by the other chips of the module
- − not sensitive to voltage drops
- − on-chip regulated supply voltages
- − radiation hardness (> 500 Mrad) silicon proven in RD53A and next prototypes

- Over-voltage protection: V_{IN} clamped to 2 V
- Under-shunt protection: V_{OUT} decreased in case shunt current goes below a certain threshold (due to excess load current)

 \div V_{our} tunable by chip configuration

Up to 14 modules per chain

ITkPixV1.1 measurement at room T, pre-rad

pacher@to.infn.it 10 / 20 and 10 / 20 and 10 σ 7WEPP 2023

Differential analog front-end (ATLAS)

- single-stage charge-sensitive amplifier (CSA)
- − continuous-reset integrator with tunable feedback current (global setting)
- − dedicated leakage-current compensation circuit
- DC-coupled differential pre-comparator stage
- $per-pixel$ threshold adjustment with local $4+1$ bit DAC
- − fully-differential comparator

Linear analog front-end (CMS)

- single-stage charge-sensitive amplifier (CSA)
- Krummenacher feedback for triangular pulse-shaping and leakage-current compensation
- low-power asynchronous fast comparator for hit discrimination
- 10-bit DAC for global threshold
- per-pixel threshold adjustment with local 5-bit DAC

Pixel digital architecture

Per-pixel digital logic

- selectable synchronous or asynchronous hit-sampling mode
- − charge measurement by means of Time-over-Threshold (ToT)
- − hits stored as ToT values + BX time-stamp
- − per-pixel 6-bit ToT ripple counters, then mapped to 4-bits only
- − selectable dual-slope 6-to-4 ToT mapping for digital charge compression (useful in case of elongated clusters)
- − selectable ToT clock frequency (40 MHz or dual-edge 80 MHz)
- − digital and analog injection

Region-based digital logic

- pixels readout organized into $1 (r\phi) \times 4 (z)$ pixel regions
- − per-pixel 4x8 ToT memory slots
- − shared timestamp memory among 4x pixels in the same pixel-region
- − trigger-matching performed at pixel level with programmable 9-bit trigger latency (max. $12.5 \text{ }\mu\text{s}$)
- − token-based readout of hits
- − hit-OR path + 11-bit Precision ToT (PTOT) counting at 640 MHz in the chip periphery for precise front-end and sensors characterization

Data-flow architecture

Command, control and timing

- − one single 160 Mb/s differential control link with a custom developed protocol driving up to 15 chips (4-bit addressing $+$ broadcast)
- − CDR/PLL recovers Data and Clock

Readout via high-speed CML serial links

- − token-based readout of hits
- − hit data read in parallel for each core-column as soon as a valid trigger is received
- multiple levels of data processing, event building, data buffering and formatting
- − service data collection and formatting (e.g. ADC motoring data, pixel configuration readback values) interleaved with Physics data in a set ratio (default 1:50)
- − Aurora 64b/66b encoding (on-chip Aurora transmitter)
- − building an Aurora frame based data stream to be send to high-speed serializers (4x 1.28 Gb/s)

Design For Testability (DFT)

- entire chip-periphery covered by scan-chain
- industry-standard methodology adopted to speed-up Wafer Level Testing (WLT) for massive production

Multi-chip Data Merging (DM)

- − additional 4x LVDS inputs up to 320 Mb/s
- allows to **reduce the number of e-links** to read out data in the **outer layers** (reduced per-chip hit-rates)
- − one chip can be configured as "primary" to aggregate serial data coming from one or more "secondary" chips and merge them with its own output
- data from the secondary chip(s) merged with data from the primary chip in a simple round robin scheme

pacher@to.infn.it [TWEPP 2023](#page-0-0) 15 / 20

SEU/SET mitigation strategy

SEU protection (chip-periphery)

- approx. 100 Hz expected SEU rate per chip for the innermost layer
- − protect vital circuitry and data as far as feasible within space limits
- priorities: protect configuration data, state machines and memory pointers
- semi-custom flow developed by the RD53 Collaboration
- − TMR automatically inserted during synthesis based on register name (all FlipFlops are triplicated unless marked as _notmr in RTL)
- − placement spacing constraint between FlipFlops then applied during place-and-route
- − after TMR, low-enough SEU rate to allow continuos re-programming of global configuration registers and pixel configuration registers

SEU protection (pixel level)

- not enough space available to TMR all FlipFlops in the 8x8 pixel core
- − TMR performed only on a limited set of per-pixel configuration latches, then rely on continuos reconfiguration
- extensive SEU/SET simulations to validate the design at both RTL and GL

SET mitigation

- usage of synchronous reset (almost) everywhere
- − **SET filtering** achieved by means of automatically-inserted extra delays close to clock pins to locally spread the clock between FlipFlops

SEU cross-section comparison from heavy-ion testing

pacher@to.infn.it 16 / 20 acher 2023 16 / 20 acher 2023 16 / 20

Design verification

Don't miss Adi's talk on this crucial topic!

Best Practices in Design Verification of ASICs for High Energy Physics Experiments

https://indico.cern.ch/event/1255624/contributions/5445241

Digital verification

Verification standard adopted in RD53 is UVM

- − Universal Verification Methodology (IEEE Std. 1800.2-2020)
- − industry-like approch, well-supported by tool vendors

RD53 verification framework

- use of UVM concepts $→$ implement design-specific UVM Verification Components (UVC)
- − Command UVC: send commands according to protocol
- − Aurora UVC: receive data, send data for DataMerging
- **Hit UVC: send random hits or from distributions**
- − Reference model: predicts events, receive hits and triggers, read registers mirror
- − Scoreboard: receive predictions from the Reference Model, receive data readouts from the DUT

Metric Driven Verification (MDV)

- − simulate until the desired coverage is reached
- − verification goal is always 100%
- − Code Coverage
- − Functional Coverage
- − use constrained randomization to test all feasible combinations of configuration and inputs
- randomize sets of tests and learn which set is optimal (fewest runs) to reach coverage goals

RD53 verification framework (UVM)

pacher@to.infn.it 17 / 20 acher@to.infn.it 17 / 20

Preliminary results from RD53C-ATLAS (ItkPixV2) testing

More results presented by M. Mironova a few weeks ago at PSD13!

First results from the RD53 ATLAS pixel production readout ASIC (ITkPixV2) for HL-LHC

https://indico.cern.ch/event/1230837/contributions/5555586

First start-up of ItkPixV2

- final RD53C-ATLAS (ItkPix_v2) production chip submitted on Apr 2023
- wafers received back from the foundry at the end of July
- extensive test campaigns immedialtely started at differet RD53 collaboration sites (CERN, Bonn, LBNL, Torino)
- initial results very promising !
	- − Shunt-LDO and current measurements
	- − injection circuit caibration
	- − digital and analog injection scans
	- − threshold scans and trimming
	- − digital configurations
	- − implemented bug fixes works

First start-up of ItkPixV2 (cont'd)

pacher@to.infn.it [TWEPP 2023](#page-0-0) 19 / 20

- − The readout chips for the ATLAS and CMS HL-LHC pixel detectors are being developed by the RD53 Collaboration on 65 nm CMOS technology since 2013
- − Very big collaboration (24 institutions from Europe and USA) lasting for almost 10 years ...
- − ... and (extremely) rare example of engineers and physicists of two experiments working together !
- − The first half-size prototype RD53A has been crucial to initially explore design variations and to understand how to cope with the complexity of implementing such large and complex pixel chips
- − Development of a common design and verification framework to implement final chips as two different "instances" of a common design having different sizes and different Analog Front-End
- − Full-size pre-production chips RD53B-ATLAS (ITkPixV1) and RD53B-CMS (CROC_V1) implementing all functionalities requested to operate into real experiments have been submitted though 2020 and 2021
- − The ATLAS final production chip ITkPixV2 has been submitted in Apr and characterizations have started
- − All measurements up to now indicate that the chip works fine, more results to come
- − The CMS final production chip CROCv2 has been already assembled and verified and it is ready for sumbission

Thank you for your attention !

