

# **Measurement of UKRI-MPW0 after irradiation:** An HV-CMOS prototype for high radiation tolerance

<u>C. Zhang\*, J. Hammerich, S. Powell, E. Vilella, B. Wade</u> University of Liverpool, Department of Physics \*<u>chenfan@hep.ph.liv.ac.uk</u>



TWEPP 2023 - Topical Workshop on **Electronics for Particle Physics** 2-6 October 2023 (Geremeas, Sardinia)





#### Introduction: HV-CMOS sensor

- Sensing diode and readout electronics are in the same substrate (monolithic).
- High bias voltage forms a wide depletion region (radiation tolerant).
- Single layer structure  $\rightarrow$  low cost, low material budget.
- Both NMOS and PMOS transistors can be implemented (full CMOS).







Cross-section of a typical large fill-factor HV-CMOS sensor

## **Motivation: radiation tolerance**

- Much higher luminosity (>  $5 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>) in future experiments.
- To survive radiation damage after long operation, pixel trackers must have higher radiation tolerance.
- The table below compares the best achieved HV-CMOS performance with the tracking detector requirements for future experiments.

|                                | HV-CMOS<br>performance          | HL-LHC                                               | FCC-hh                                                    |
|--------------------------------|---------------------------------|------------------------------------------------------|-----------------------------------------------------------|
| Radiation tolerance            | $2 \times 10^{15}  n_{eq}/cm^2$ | 10 <sup>16</sup> n <sub>eq</sub> /cm <sup>2</sup> /y | $10^{16}$ - $10^{17}$ n <sub>eq</sub> /cm <sup>2</sup> /y |
| Pixel size                     | $50 \times 50 \mu m^2$          | $50 \times 50 \mu m^2$                               | $25 \times 50 \mu m^2$                                    |
| Time resolution                | 3.7 ns                          | 0.2* - 1000 ns**                                     | ~ 100 ps                                                  |
| Thickness<br>(material budget) | 50 µm                           | 0.1%** - 2%<br><i>X</i> <sub>0</sub> /layer          | 1% X <sub>0</sub> /layer                                  |





\*LHCb requirement; \*\*ALICE requirement

#### Chenfan Zhang TWEPP 2023 2-6. Oct. Sardinia

## **UKRI-MPW0: new cross-section**

- 3 different schemes for high voltage biasing:
  - (1) HV biased from the topside only (commonly used);
  - (2) HV biased from the backside with floating topside contacts (has been tested);
  - ③ HV biased from the backside, no topside contacts (first use in UKRI-MPW0).



UKRI-MPW0







- Depletion depth  $d \propto \sqrt{\rho}$ .  $V_{bias}$ .
- High  $V_{bias}$  maintains a wide depletion region after radiation  $\rightarrow$  better radiation tolerance.

## **UKRI-MPW0: chip details**

- A 20  $\times$  29 pixel matrix with 3 pixel flavours (using traditional linear transistors);
- II. Pixel matrix with 2 Enclosed Layout Transistors (ELT) inside each pixel for TID tolerance;
- III. Test structures for I-V and Edge-TCT.
- LFoundry LF15A process (150 nm).
- Two wafers with high resistivity of 1.9 k $\Omega$ ·cm.
- Thinned to 280  $\mu$ m using TAIKO grinding.
- Wafer 1: p<sup>+</sup> on the backside was implanted using **beamline** and activated with Rapid Thermal Annealing (RTA).
- Wafer 2: p<sup>+</sup> was implanted by **plasma** and activated with laser annealing.









## **UKRI-MPW0: I-V before irradiation**

- N-type rings:
- Current Terminating Ring (CTR)
- ► Clean-up Ring (CR)









• Reach 4 mA compliance at > 600 V (thermal runaway, not real breakdown).





## **UKRI-MPW0: parasitic channel**

- High pixel current at low bias, caused by a parasitic channel under STI.
- Channel is closed by high bias voltage.









## **UKRI-MPW0: I-V after irradiation**

- N-type rings:
- ► Current Terminating Ring (CTR)
- ► Clean-up Ring (CR)
- Higher fluence —> higher pixel leakage current and lower ring leakage current.
- Reach compliance at larger bias voltage.





Plasma + laser annealing









## **UKRI-MPW0: depletion depth**

• Edge-TCT to measure depletion depth at different bias and fluence.









- B. Wade IWORID 2022 500 600 Nominal Reverse Bias Voltage V<sub>bias</sub> [V] 400
- Chip is fully depleted at 300 V for  $1 \times 10^{14} n_{eq}/cm^2$ (chip thickness:  $280 \mu m$ ).
- Depletion depth >  $50 \,\mu m$ is achieved with  $1 \times 10^{16}$  $n_{eq}/cm^2$ .

## **UKRI-MPW0: pixel matrix**

- Pixel matrix has three pixel flavours:
  - 1. Continuous-reset pixel
  - 2. Switched-reset pixel
  - 3. Modulated-reset pixel





**UK Research** and Innovation









## **UKRI-MPW0: pixel and DAQ**



- Pixel comparator output is buffered for readout.
- Each column has own readout pad.
- DAQ is based on **Caribou**.
- Time parameters (ToA, ToT) are digitised off-chip.







## Source hit map

- Used a Sr90 source to plot the number of hits received by pixels over a shutter window of 20 s.
- Hits number increases with High Voltage.
- Pixel flavour in the milder (Switched-reset) detects more hits due to higher gain.



















#### Source hits vs HV

• Plot mean hits per pixel with different High Voltages and for different radiation fluence.







13



## **Pixel characterisation**

#### • Pixel performance is measured using S-curve scans.





#### Chenfan Zhang TWEPP 2023 2-6. Oct. Sardinia







## **Pixel characterisation**

#### • Threshold before and after trimming:





#### Chenfan Zhang TWEPP 2023 2-6. Oct. Sardinia





## UKRI-MPW1

- Succeeding UKRI-MPW1 is designed.
- STI to prevent parasitic channel.
- Use a new chip ring structure for lower leakage.
- Ring (ER)) or backside.









## **Conclusion and outlook**

#### **Conclusions:**

- ► UKRI-MPW0 is a proof-of-concept HV-CMOS chip with backside-only biasing.
- > Breakdown voltage > 600 V.
- > After 1e16  $n_{eq}/cm^2$  neutron irradiation, depletion depth > 50  $\mu$ m.
- > pixel performance after irradiation has been evaluated.
- ► In UKRI-MPW1: improve the high leakage current by modifying the chip rings; prevent the channel under STI by adding P-shield.

#### Outlook:

- Evaluate UKRI-MPW0 pixel matrix in testbeam.
- ► UKRI-MPW1 will be delivered in November 2023.



