

Fault Tolerance Evaluation of a RISC-V Microprocessor for HEP Applications

TWEPP 2023 – October 3rd, 2023

Introduction

• Many custom ASICs have a similar structure:

- Design and verification of a custom ASIC is complex and time-consuming
- Reuse of generic blocks possible (ADC, voltage regulators, etc.)
- Adaptation of internal logic difficult, custom to original application
- Internal data processing logic replaced by with RISC-V processing system
 - Adaptation to new application / Bugfixes via firmware updates
- Hybrid detector with RISC-V-based microprocessor SoC

STRV-R1 – Architecture

- RV32-IMC Core
 - 3 stage pipeline
 - Multiplication extension
 - 50 MHz @ 1.2V
 - Fully triplicated core
- SRAM shared between instruction & data
 - Flexible memory layout
 - IMEM & DMEM data bus can access whole SRAM address range
 - RISC-V pipeline stalls during load & store instructions to SRAM
 - load & store to peripherals simultaneously possible
- JTAG Interface
 - JTAG TAP & debug module
 - Non-volatile debug ROM with debug ISR

STRV-R1 – Implementation

- 2mm x 2mm in 65nm Technology
- TMR strategy in RISC-V Core:
 - Triplication of
 - All sequential elements
 - All combinational logic
 - Majority voter after every sequential element
 - Additional feedback path
 - Three separate clock-trees
- TMR SRAM strategy:
 - 3 dual-port SRAM instances
 - Majority voter in datapath to core
 - Scrubbing on second SRAM port
 - 3x 32Kbyte
 - Divided into two 16-bit wide SRAM cells
 - Scrubbing time limit 320µs @ 50MHz

STRV-R1 – SEU Detection

- Detection of occurred SEUs during irradiation
- Externally via test system and internally via integrated counters
 - 32Bit counter accessible via memory mapped registers
 - RISC-V core:
 - Output of majority voters
 - Routed through or-gate tree
 - Detection in the SRAM:
 - During data access by RISC-V core
 - Continuous data scrubbing on secondary SRAM port

STRV-R1 – Heavy-Ion Irradiation

SEU Cross-Section of SRAM macros

• Good agreement with previously published 65nm technology characterization

SEU Cross-Section of sequential elements

- Larger cross section compared to published 65nm technology characterization
- Likely caused by different architecture / additional combinational logic

STRV-R1 – Heavy-Ion Irradiation SEFI

- Despite the SEE mitigation techniques SEFIs o
 - SEFIs observed during heavy-ion Irradiation
 - Average improvement over SEU cross-section
 - At low LETs (<16 MeV.cm²/mg): 2800x
 - At high LETs (>32 MeV.cm²/mg): 7700x
- Estimated SEFI rate in HL-HLC environment
 - SEE particle flux 1×10^9 p/cm²/s
 - 2.2 Chip level SEFI per hour

Cross-	L_0	$\sigma_{HI\infty}$	$L_{0.25}$	$\sigma_{p\infty}$
section	$\left[\frac{MeVcm^2}{mg}\right]$	$[cm^2]$	$[rac{MeVcm^2}{mg}]$	$[cm^2]$
SEU	< 1.0	4.27×10^{-2}	18.87	2.66×10^{-9}
SEFI	< 5.7	2.95×10^{-6}	10.32	6.15×10^{-13}
Timing	< 3.3	2.86×10^{-5}	19.95	1.58×10^{-12}

Cross- section	$\sigma_{p\infty}$ $[cm^2]$	$\begin{bmatrix} \mathbf{a} & \mathbf{\Phi} \\ \begin{bmatrix} Hz \\ \mathbf{a} \end{bmatrix}$	Event rate [<i>Hz</i>]	Events / h $\left[\frac{1}{4}\right]$
SEU SEFI	$\frac{2.66 \times 10^{-9}}{6.15 \times 10^{-13}}$	$\frac{1}{1 \times 10^9}$ 1×10^9	$\frac{2.66}{6.15 \times 10^{-4}}$	

٠

STRV-R1 – Heavy-Ion Irradiation SEFI

- Observed types of SEFIs during Irradiation:
 - Silent Data Corruption (SDC):
 - Application cycle completes normally
 - Values calculated by DUT deviate from expected values
 - Timing Deviation:
 - Application cycle completes normally
 - No indication of an error
 - Calculated data correct
 - At least one clock cycle deviation

- Timeout:

- DUT does no longer responds to test system
- Reset required
- SEFIs that cannot be recovered by resetting of the RISC-V core:
 - Data or instructions in the SRAM corrupted
 - Reprogramming of the SRAM required
- Reprogramming rate:
 - For low LET (<16 MeV.cm²/mg): Reprogramming required in 30% of SEFIs
 - For higher LET (>16 MeV.cm²/mg): Reprogramming required for >50% of SEFIs

SEE-Injection Simulation Framework

- Designed to replicate real-world impact of SEE
- Intended for simulations with synthesis or place and route netlists
- Ability to incorporate physical cell placement information into the design
- Automatic generation of SystemVerilog assertions
- No design or netlist modification required
 - modification of cell library required
- VPI Functions used to communicate with simulator

SEE-Injection Signal Selection

- Randomization
- Reproducibility and random stability
 - Framework uses PRNG with one-time seed provided by simulator
- Fault intent specification
 - Scope to be covered by injection (top level of injection)
 - Type of fault to inject (SET / SEU / Macro specific)
- Filtering options
 - Nodes to be injected on
 - Netlist exclusions (string manipulation)
 - Cell type selection (with DEF mapping)

SEE-Injection Layout Information

- Addition to randomized selection from netlist
- Layout Information from DEF
 - Positions mapped to faultable node objects
 - Distance from faulted node to other nodes calculated
 - Interaction probability determines secondary SEEs
 - Additional nodes upset

Runtime SEU | SET Modelling

- SET are less meaningful in RTL
 - Synthesis and place & route netlist used
- SEU Injection requires instrumentation of the STD cell library
 - Added internal signal to invert the stored value
- Select (randomized) node and SEE duration
- Read state of selected node from simulator using VPI functions
- Invert net state using VPI set value function with force flag
- Create a callback for the SEE duration
- Simulator continues for the given amount of time
- Callback from Simulator when time elapsed
- Release the net using VPI function
- SEE duration in SEUs: Time the upset is actively forced
 - Upset is help until next valid sequential activity

Standard Cell Library Instrumentation

- Timing of SEE independent of clock (randomized)
- SET in the combinational logic or clock-tree
 - ightarrow Timing violations possible in sequential logic
 - Setup, Hold, Width violations
- Typical standard cell models set sequential output to X (unknown)
- Propagation through netlist according to simulator settings

SET in comb. logic (setup / hold violation)

- Modified standard cell library to replicate real-world behavior
 - Randomized valid output propagated to next cells

SET in comb. logic (setup / hold violation), output randomized

SET in clock-tree (setup / hold / width violation)

٠

Standard Cell Library Instrumentation

- Timing violation propagation instrumentation:
 - Replicate real-world behavior of cell
 - Separate probability calculation for
 - Setup / Hold
 - Width (clock)
 - Randomized output
 - Modified primitives required
- SEE Injection instrumentation:
 - Introduction of a keyword
 - Detected by framework node extraction step
 - SEU: Additional signal to invert the stored value
 - Original STD cell primitives can be reused

٠

SRAM Macro Cell Instrumentation

- SRAM macros handled differently than standard cells
 - Depending on SRAM cells used, location information not available
 - Interleaving architecture, the bits in a data word are not physically adjacent
 - Multiple-bit upset (MBU) distribution can be used
 - Randomized distribution over multiple bits & multiple words
- Typical foundry HDL SRAM models assume worst case •
 - Read operations are generally not critical to the internal state
 - Write operation to unknown address invalidates entire memory
- Foundry SRAM models modified to replicate real-world behavior ٠
- Timing violation handling ٠
 - Control signals: Assume random operation
 - Address: Assume single randomized address
 - Data input: Store randomized word

Modified foundry SRAM model

0

0

0

1

0

0

0

0

0

0

0

0

0

Runtime | Verification | Assertions

- Verify that triplication is implemented correctly
 - Correction of SEUs within one clock cycle for fully triplicated nodes
- TMR assertions for full TMR
 - regA.seu |=> ##1 (regA.Q == regB.Q == regC.Q)
 - regB.seu |=> ##1 (regA.Q == regB.Q == regC.Q)
 - RegC.seu |=> ##1 (regA.Q == regB.Q == regC.Q)
- TMR assertion can be automatically generated by framework
- Fault simulation with reference simulation without fault injections
 - Differences in majority voted data indicate potential SEFI
- Limitations of direct comparison with reference simulation
 - Not all differences lead to an error on the CPU (SEFI)
- Checksum of the RISC-V Core register set, status register, etc.
 - Compare state changes between checksums
 - Valid state changes provided by golden reference

STRV-R1 SEU Contributing Sources

- University of Applied Sciences and Arts
- Apart from direct hits, data in sequential elements can be modified by:
- SETs in clock buffers / inverter of the clock tree
 - Depending on the level in the clock tree, large number of leafs affected
 - Additional clock pulses inserted
- Additional clock pulses can be masked by inactive / static data path
 - Static data paths are common in general purpose circuits such as RISC-V cores
- Clock pulse timing width violation in sequential logic
 - Sequential element may not store new state
 - Reduced impact compared to SET in clock signals
- Capture of SET in data path
 - Masked by combinational logic and application-specific state
 - Setup-Hold violations can mask the impact of SETs
- Simulation constraints to simulate additional contributing SEU sources:
 - Dhrystone benchmark executed by RISC-V core
 - SETs evenly distributed over a clock cycle
 - Shown randomized distribution of SET pulse duration used
- Effective SEU rate increased with higher clock frequency
 - Critical for high performance RISC-V ASIC designs

STRV-R1 (SEU-tolerant-RISC-V) - TWEPP 2023 | alexander.walsemann@fh-dortmund.de

SET pulse duration (ps)

0.12

0.1

distribution 80

probability o 90'0

Relative

0.02

SET Capture in Sequential Logic

- Single Event Transients captured by endpoint sequential Logic
- Cone of logic as input to sequential Logic
 - Dissipation during propagation through design
 - Elongation during propagation through design
 - Masking via other combinational logic
- Application-specific designs contain a significant number of masked data paths
 - SET capture rate in specific test structure is higher
- Simulation constraints for SETs in data paths:
 - Different application software executed (masked path variation)
 - SETs evenly distributed across clock cycle

STRV-R1 (SEU-tolerant-RISC-V) - TWEPP 2023 | alexander.walsemann@fh-dortmund.de

STRV-R1 SEFI Sources

- Clock domain crossing
- RISC-V Example:
 - JTAG Interface debug module
 - Debug module part of core clock domain
 - DTM driven by externel JTAG clock
 - Risk of SEU accumulation in section without active clock
- Dynamic SEE behaviour of SRAM macro cells
- Phyisical constraints:
- Clock-tree spacing (CTS)
 - successive ECO placement and routing steps
- Clock-tree spacing between flip-flops and clock buffer
 - Distance from Clock buffer of TMR group A to Flip-Flop of group B
 - Timing constraints place clock buffer and start / endpoints in the same area
 - Distance to combinational logic has less impact
 - Masked data paths, SET capture rate

Summary | Conclusion

- Heavy-Ion irradiation results
 - Effective SEU cross-section is larger than in test-structures for sequential elements
 - TMR protection scheme in RISC-V core achieves up to 8000x improvement
 - SEFI cross-section directly compared to the SEU cross-section
 - Additional soft-error mitigation required to achieve an acceptable residual risk at 1 GHz / cm2 particle flux
- SEE-Injection simulation framework has been developed
 - Designed to replicate the real-world impact of SEE
 - Intended for simulations using synthesis or place and route netlists
 - Ability to incorporate physical placement information
 - Simulation of multiple concurrent SEEs