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Introduction
• Many custom ASICs have a similar structure:

• Design and verification of a custom ASIC is complex and time-consuming

• Reuse of generic blocks possible (ADC, voltage regulators, etc.)

• Adaptation of internal logic difficult, custom to original application

• Internal data processing logic replaced by with RISC-V processing system

– Adaptation to new application / Bugfixes via firmware updates

• Hybrid detector with RISC-V-based microprocessor SoC 
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STRV-R1 – Architecture
• RV32-IMC Core

– 3 stage pipeline
– Multiplication extension
– 50 MHz @ 1.2V
– Fully triplicated core

• SRAM shared between instruction & data
– Flexible memory layout
– IMEM & DMEM data bus can access whole SRAM address range
– RISC-V pipeline stalls during load & store instructions to SRAM
– load & store to peripherals simultaneously possible

• JTAG Interface
– JTAG TAP & debug module
– Non-volatile debug ROM with debug ISR
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STRV-R1 – Implementation
• 2mm x 2mm in 65nm Technology

• TMR strategy in RISC-V Core:
– Triplication of

• All sequential elements
• All combinational logic

– Majority voter after every sequential element
– Additional feedback path
– Three separate clock-trees

• TMR SRAM strategy:
– 3 dual-port SRAM instances
– Majority voter in datapath to core
– Scrubbing on second SRAM port
– 3x 32Kbyte
– Divided into two 16-bit wide SRAM cells
– Scrubbing time limit 320μs @ 50MHz
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STRV-R1 – SEU Detection 
• Detection of occurred SEUs during irradiation
• Externally via test system and internally via integrated counters

– 32Bit counter accessible via memory mapped registers
– RISC-V core:

• Output of majority voters
• Routed through or-gate tree

– Detection in the SRAM:
• During data access by RISC-V core 
• Continuous data scrubbing on secondary SRAM port
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STRV-R1 – Heavy-Ion Irradiation
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SEU Cross-Section of SRAM macros
• Good agreement with previously published 65nm 

technology characterization

SEU Cross-Section of sequential elements
• Larger cross section compared to published 65nm 

technology characterization
• Likely caused by different architecture / additional 

combinational logic



STRV-R1 – Heavy-Ion Irradiation SEFI
• Despite the SEE mitigation techniques SEFIs o

– SEFIs observed during heavy-ion Irradiation
– Average improvement over SEU cross-section

• At low LETs (<16 MeV.cm²/mg): 2800x

• At high LETs (>32 MeV.cm²/mg): 7700x

• Estimated SEFI rate in HL-HLC environment
– SEE particle flux 1 × 109 p/cm²/s
– 2.2 Chip level SEFI per hour
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STRV-R1 – Heavy-Ion Irradiation SEFI
• Observed types of SEFIs during Irradiation:

– Silent Data Corruption (SDC):
• Application cycle completes normally
• Values calculated by DUT deviate from expected values

– Timing Deviation:
• Application cycle completes normally
• No indication of an error
• Calculated data correct
• At least one clock cycle deviation

– Timeout:
• DUT does no longer responds to test system
• Reset required

• SEFIs that cannot be recovered by resetting of the RISC-V core:
– Data or instructions in the SRAM corrupted
– Reprogramming of the SRAM required

• Reprogramming rate:
– For low LET (<16 MeV.cm²/mg): Reprogramming required in 30% of SEFIs
– For higher LET (>16 MeV.cm²/mg): Reprogramming required  for >50% of SEFIs
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SEE-Injection Simulation Framework
• Designed to replicate real-world impact of SEE

• Intended for simulations with synthesis or place and route netlists

• Ability to incorporate physical cell placement
information into the design

• Automatic generation of SystemVerilog assertions

• No design or netlist modification required

– modification of cell library required
• VPI Functions used to communicate

with simulator
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SEE-Injection Signal Selection
• Randomization
• Reproducibility and random stability 

– Framework uses PRNG with one-time seed provided by simulator

• Fault intent specification
– Scope to be covered by injection (top level of injection)
– Type of fault to inject (SET / SEU / Macro specific)

• Filtering options
– Nodes to be injected on
– Netlist exclusions (string manipulation)
– Cell type selection (with DEF mapping)
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• Addition to randomized selection from netlist
• Layout Information from DEF

– Positions mapped to faultable node objects
– Distance from faulted node to other nodes calculated
– Interaction probability determines secondary SEEs
– Additional nodes upset
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Runtime SEU | SET Modelling
• SET are less meaningful in RTL

– Synthesis and place & route netlist used
• SEU Injection requires instrumentation of the STD cell library

– Added internal signal to invert the stored value

• Select (randomized) node and SEE duration
• Read state of selected node from simulator using VPI functions
• Invert net state using VPI set value function with force flag
• Create a callback for the SEE duration
• Simulator continues for the given amount of time
• Callback from Simulator when time elapsed
• Release the net using VPI function

• SEE duration in SEUs: Time the upset is actively forced
– Upset is help until next valid sequential activity
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Standard Cell Library Instrumentation
• Timing of SEE independent of clock (randomized)
• SET in the combinational logic or clock-tree

à Timing violations possible in sequential logic
– Setup, Hold, Width violations

• Typical standard cell models set sequential output to X (unknown)
• Propagation through netlist according to simulator settings 

• Modified standard cell library to replicate real-world behavior
– Randomized valid output propagated to next cells 
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Standard Cell Library Instrumentation
• Timing violation propagation instrumentation:

– Replicate real-world behavior of cell
– Separate probability calculation for

• Setup / Hold
• Width (clock)

– Randomized output
– Modified primitives required

• SEE Injection instrumentation:
– Introduction of a keyword

• Detected by framework node extraction step
– SEU: Additional signal to invert the stored value
– Original STD cell primitives can be reused
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SRAM Macro Cell Instrumentation
• SRAM macros handled differently than standard cells

– Depending on SRAM cells used, location information not available
– Interleaving architecture, the bits in a data word are not physically adjacent 
– Multiple-bit upset (MBU) distribution can be used

• Randomized distribution over multiple bits & multiple words

• Typical foundry HDL SRAM models assume worst case 
– Read operations are generally not critical to the internal state
– Write operation to unknown address invalidates entire memory

• Foundry SRAM models modified to replicate real-world behavior
• Timing violation handling

– Control signals: Assume random operation
– Address: Assume single randomized address
– Data input: Store randomized word
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Runtime | Verification | Assertions
• Verify that triplication is implemented correctly

– Correction of SEUs within one clock cycle for fully triplicated nodes
• TMR assertions for full TMR

– regA.seu |=> ##1 (regA.Q == regB.Q == regC.Q)
– regB.seu |=> ##1 (regA.Q == regB.Q == regC.Q)
– RegC.seu |=> ##1 (regA.Q == regB.Q == regC.Q)

• TMR assertion can be automatically generated by framework

• Fault simulation with reference simulation without fault injections 
– Differences in majority voted data indicate potential SEFI

• Limitations of direct comparison with reference simulation
– Not all differences lead to an error on the CPU (SEFI)

• Checksum of the RISC-V Core register set, status register, etc.
– Compare state changes between checksums
– Valid state changes provided by golden reference
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STRV-R1 SEU Contributing Sources
• Apart from direct hits, data in sequential elements can be modified by:
• SETs in clock buffers / inverter of the clock tree

– Depending on the level in the clock tree, large number of leafs affected
– Additional clock pulses inserted

• Additional clock pulses can be masked by inactive / static data path
– Static data paths are common in general purpose circuits such as RISC-V cores

• Clock pulse timing width violation in sequential logic
– Sequential element may not store new state 
– Reduced impact compared to SET in clock signals

• Capture of SET in data path
– Masked by combinational logic and application-specific state
– Setup-Hold violations can mask the impact of SETs

• Simulation constraints to simulate additional contributing SEU sources:
– Dhrystone benchmark executed by RISC-V core
– SETs evenly distributed over a clock cycle
– Shown randomized distribution of SET pulse duration used 

• Effective SEU rate increased with higher clock frequency
– Critical for high performance RISC-V ASIC designs
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SET Capture in Sequential Logic
• Single Event Transients captured by endpoint sequential Logic
• Cone of logic as input to sequential Logic

– Dissipation during propagation through design
– Elongation during propagation through design
– Masking via other combinational logic

• Application-specific designs contain a significant number of masked data paths
– SET capture rate in specific test structure is higher

• Simulation constraints for SETs in data paths:
– Different application software executed (masked path variation)
– SETs evenly distributed across clock cycle
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STRV-R1 SEFI Sources
• Clock domain crossing
• RISC-V Example:

– JTAG Interface debug module
– Debug module part of core clock domain
– DTM driven by externel JTAG clock
– Risk of SEU accumulation in section without active clock

• Dynamic SEE behaviour of SRAM macro cells

• Phyisical constraints:
• Clock-tree spacing (CTS)

– successive ECO placement and routing steps
• Clock-tree spacing between flip-flops and clock buffer

– Distance from Clock buffer of TMR group A to Flip-Flop of group B
– Timing constraints place clock buffer and start / endpoints in the same area
– Distance to combinational logic has less impact
– Masked data paths, SET capture rate
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• Heavy-Ion irradiation results
– Effective SEU cross-section is larger than in test-structures for sequential elements
– TMR protection scheme in RISC-V core achieves up to 8000x improvement

• SEFI cross-section directly compared to the SEU cross-section
– Additional soft-error mitigation required to achieve an acceptable residual risk at 1 GHz / cm2 particle flux

• SEE-Injection simulation framework has been developed
– Designed to replicate the real-world impact of SEE
– Intended for simulations using synthesis or place and route netlists
– Ability to incorporate physical placement information

• Simulation of multiple concurrent SEEs
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