

Towards Single-Event Upset Detection in Hardware Secure RISC-V Processors

Jeffrey Prinzie, Boris Engelen, Karel Appels, Levi Mariën, Naïn Jonckers

Electronic Circuits and Systems

Advanced Integrated Sensing Lab (ADVISE)

Outline

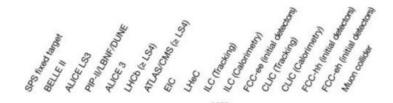
- Motivation
- Research Methodology
- Fault Injection Simulation Results
- Conclusion

TWEPP 2023 - Towards Single-Event Upset Detetion in Hardware Secure RISC-V

Motivation

Processing systems in radiation environments

High-Energy Physics

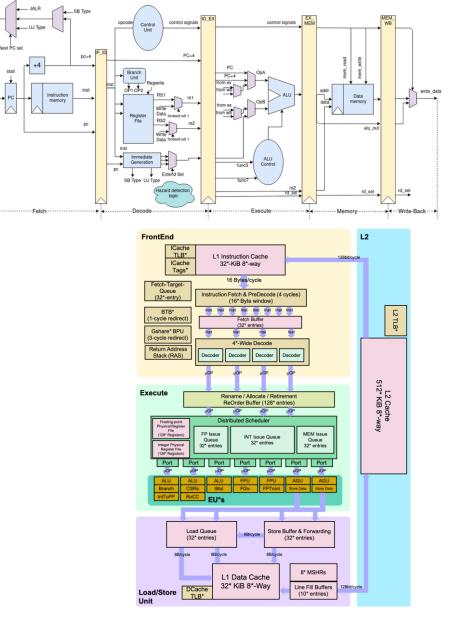

- Housekeeping processors (monitoring, configuration)
- Detector data processing (pixel/vertex/ML processors)

Space applications

- Primary on-board computer
- Secondary computers (Data processing, accelerators, ...)

SEUs can cause data errors, unpredictable behavior or severe crashes

Data density	High data rate ASICs and systems New link technologies (fibre, wireless, wireline) Power and readout efficiency	7.1 7.1 71	•				*		•••	•	•••	•	:
Intelligence on the detector	Front-end programmability, modularity and configurability Intelligent power management Advanced data reduction techniques (ML/AI)	7.2 7.2 7.2			•	• •	*		••	:	••	•	
4D- techniques	High-performance sampling (TDCs, ADCs) High precision timing distribution Novel on-chip architectures	7.3 7.3 7.3	:	:			•	••	::	•	::	•	:
Extreme environments and longevity	Radiation hardness Cryogenic temperatures Reliability, fault tolerance, detector control Cooling	7.4 7.4 7.4 7.4	•	•			*				::		
Emerging technologies	Novel microelectronic technologies, devices, materials Silicon photonics 3D-integration and high-density interconnects Keeping pace with, adapting and interfacing to COTS	7.5 7.5 7.5 7.5	•	•	•		*			:		!.	:

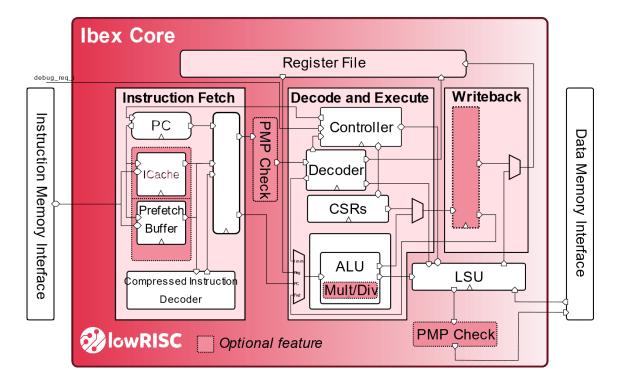


Motivation

RISC-V

- RISC-V Instruction Set Architecture (ISA)
 - Like ARM, x86, MIPS, SPARC, ...
 - Available toolchain (compiler, ...)
 - Free to use Open license
- Many open source cores/SoCs available
 - Availability of source code for fault simulation
 - (Minor) Modifications possible
 - Not limited by vendor and export issues* (i.e. ARM)

*More important for space applications



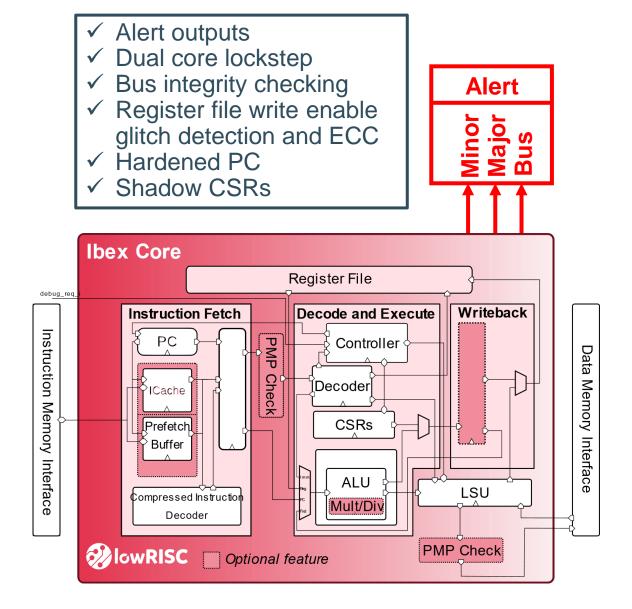
Motivation

Ibex Core overview

- Open source 32-bit RISC-V CPU
- Written in SystemVerilog
- two-stage pipeline (third pipeline stage available)
- Different configurations available

Config	"micro"	"small"	"maxperf"	"maxperf <mark>-</mark> pmp-bmfull"		
Features	RV32EC	RV32IMC, 3 cycle mult	RV32IMC, 1 cycle mult, Branch target ALU, Writeback stage	RV32IMCB, 1 cycle mult, Branch target ALU, Writeback stage, 16 PMP regions		
Performance (CoreMark/MHz)	0.904	2.47	3.13	3.13		
Area - Yosys (kGE)	16.85	26.60	32.48	66.02		
Area - Commercial (estimated kGE)	~15	~24	~30	~61		
Verification status	Red	Green	Green	Green		

https://github.com/lowRISC/ibex


Motivation

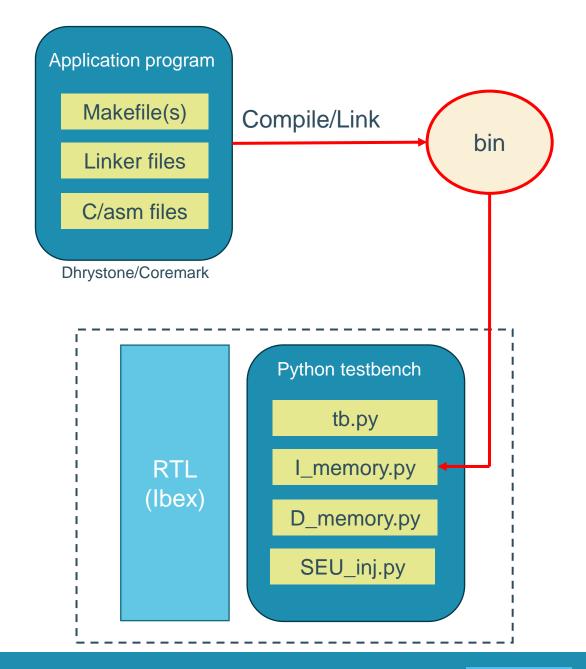
Security Features

- Ibex can implement a set of extra features to support security-critical applications
- <u>Main strategy</u>: Ibex core can detect external attacks due to corrupted states
- Alerts provided by dedicated signals

Research Question:

Can these built-in security features be used to detect SEUs within the Ibex core?

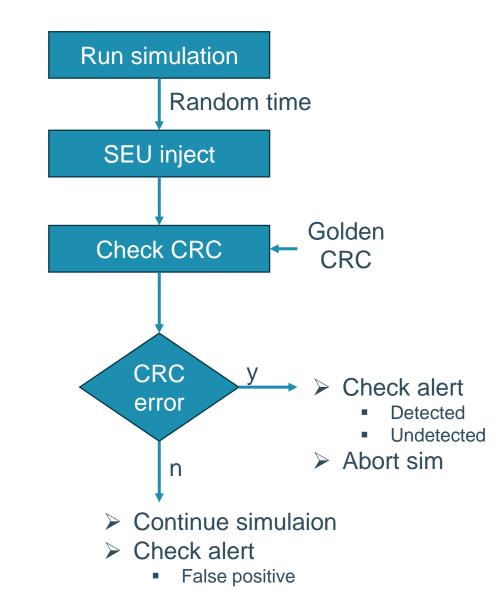
https://ibex-core.readthedocs.io/en/latest/03_reference/security.html


Research Methodology

Testbench architecture

- CoCoTB testbench
 - Ibex RTL code
 - Python models for SoC
 - Data/Instruction memory
 - Stdio
 - ...
 - Random SEU injection

(Pre-pass with Genus to extract flip-flop list)


- Application code compiled and loaded in I-memory
- Xcelium RTL simulator

Research Methodology

Health checking

- CPU state monitored each clock cycle
- CRC is accumulated on critical internal signals
 Checksum is signature for correct program flow: PC, D-addr, D-data, I-addr, RF, CSR
- Golden simulation is performed initially
- CRC is checked after SEU injection
- 300k SEUs injected

Results by symptom

Target	Total flips	Alert major internal	Alert major bus	Alert minor	No error	Undetected flips
data_req_o	299600	7230	2723	0	292370	0
data_we_o	299600	7314	2743	0	292286	0
data_be_o	299600	8024	2784	0	291576	0
data_addr_o	299600	12692	2784	0	286908	0
data_wdata_o	299600	13460	2784	0	278201	7939
data_wdata_intg_o	299600	13457	2784	0	278204	7939
instr_req_o	299600	7279	2753	0	292321	0
instr_addr_o	299600	7523	2855	0	292077	0

TB found CRC error but alert was low

Results by module

Target	Total flips	Alert major internal	Alert major bus	Alert minor	No error	False positives	Undet. flips
Total	299600	129810	5210	0	275928	114231	7939
u_prim_core_busy_flop	200	0	0	0	200	0	0
(g_clock_en_secure)							
gen_generic	50	0	0	0	50	0	0
(core_clock_gate_i)							
if_stage_i (u_ibex_core)	19600	7928	1928	0	13365	1693	0
id_stage_i (u_ibex_core)	6000	302	31	0	5709	11	0
ex_block_i	3750	0	0	0	3750	0	0
(u_ibex_core)							
load_store_unit_i	3400	1814	29	0	3154	1568	0
(u_ibex_core)							
cs_registers_i	23500	3348	0	0	23352	3200	0
(u_ibex_core)							
register_file_i	62400	10783	867	0	45648	1970	7939
(gen_regfile_ff)							
u_ibex_lockstep	180700	105635	2355	0	180700	105789	0
(gen_lockstep)							

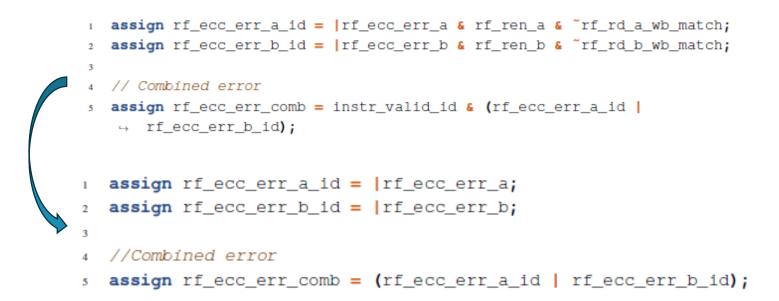
Some errors are not detected!

Improvement

Observation:

- Some errors from <u>register file</u> are undetected
- But ... register file is protected with 39/32 Hsiao code = Simple?

Simulations


- Run a few cases for undetected errors
- Trace internal alert signals

→ Result: Alerts were raised internally but masked towards the output

Improvement

- Modifications to the source code
 - Opening issue on Github
 - Bug?
- Modifications resulted in no undetected bit flips

Target	Total flips	Alert major internal	Alert major bus	Alert minor	No error	False positives	Undet. flip
Total	299600	141511	5129	0	276019	118081	0
u_prim_core_busy_flop	200	0	0	0	200	0	0
(g_clock_en_secure)							
gen_generic	50	0	0	0	50	0	0
(core_clock_gate_i)							
if_stage_i (u_ibex_core)	19600	7945	1884	0	13384	1729	0
id_stage_i (u_ibex_core)	6000	301	33	0	5711	12	0
ex_block_i	3750	0	0	0	3750	0	0
(u_ibex_core)							
load_store_unit_i	3400	1806	22	0	3160	1566	0
(u_ibex_core)							
cs_registers_i	23500	3346	0	0	23354	3200	0
(u_ibex_core)							
register_file_i	62400	21790	836	0	45710	5100	0
(gen_regfile_ff)							
u_ibex_lockstep	180700	106323	2354	0	180700	106474	0
(gen_lockstep)							

2023

Area comparison

Synthesis performed in 180nm

- ~2x area overhead
- Mostly due to lockstep datapath
- Overhead includes comparison logic

Area	Gates
No HW security	9489
HW security	20071

Research Question:

Can these built-in security features be used to detect SEUs within the Ibex core?

\rightarrow Yes, but a slight modification to the core was necessary (bug?)

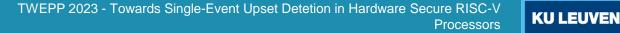
Only error detection is present, how should we correct for errors?

- TMR directly corrects errors but large overhead
- Software/architecture correction required (checkpoint, rollback)
- →Alert signals can be connected to CPU interrupt controller

No scrubbing in register file

Fault accumulate until Hsiao code cannot correct anymore

→ Registers must be refreshed in software regularly (compiler add-on required)


Conclusion

- RISC-V provides opportunity for HEP and Space applications
- Hardware secure RISC-V cores can provide a solution to ride along a much larger community → We can focus on SoC design
- Ibex RISC-V core was evaluated CoCoTB simulaton environment
- Most errors were detectable
- Small RTL correction was necessary to provide 100% coverage

KU LEU\

Jeffrey Prinzie, Boris Engelen, Karel Appels, Levi Mariën, Naïn Jonckers

