

CMS Level-1 trigger Data Scouting firmware prototyping for LHC Run-3 and CMS Phase-2

Topical Workshop on Electronics for Particle Physics 2023

R. Ardino^{1,2,3} for the CMS collaboration

¹Università degli Studi di Padova ²INFN Sezione di Padova ³CERN, Geneva, Switzerland

October 2, 2023

Introduction

Increased budget latency and rate:

- 3.8 µs → 12.5 µs
- 750 kHz of L1 output

Advanced object reconstruction on FPGA:

- Global Calorimeter Trigger (GCT) and Global Muon Trigger (GMT) (higher granularity)
- Global Track Trigger (GTT) (tracker tracks, vertex finding)
- Correlator Trigger (CL2) (Particle Flow)
- Global Trigger (GT) (with more complex algos)
- Resolution similar to offline level

Increased budget latency and rate:

- 3.8 µs → 12.5 µs
- 750 kHz of L1 output

Advanced object reconstruction on FPGA:

- Global Calorimeter Trigger (GCT) and Global Muon Trigger (GMT) (higher granularity)
- Global Track Trigger (GTT) (tracker tracks, vertex finding)
- Correlator Trigger (CL2) (Particle Flow)
- Global Trigger (GT) (with more complex algos)
- Resolution similar to offline level

- Collect and store the reconstructed particle primitives of the L1 processing chain at the full bunch crossing rate
- Enable study of exotic signatures that cannot be fit into the trigger budget

Increased budget latency and rate:

- 3.8 µs → 12.5 µs
- 750 kHz of L1 output

Advanced object reconstruction on FPGA:

- Global Calorimeter Trigger (GCT) and Global Muon Trigger (GMT) (higher granularity)
- Global Track Trigger (GTT) (tracker tracks, vertex finding)
- Correlator Trigger (CL2) (Particle Flow)
- Global Trigger (GT) (with more complex algos)
- Resolution similar to offline level

- Collect and store the reconstructed particle primitives of the L1 processing chain at the full bunch crossing rate
- Enable study of exotic signatures that cannot be fit into the trigger budget
- Global Trigger decisions ⇒ sDS

Increased budget latency and rate:

- 3.8 µs → 12.5 µs
- 750 kHz of L1 output

Advanced object reconstruction on FPGA:

- Global Calorimeter Trigger (GCT) and Global Muon Trigger (GMT) (higher granularity)
- Global Track Trigger (GTT) (tracker tracks, vertex finding)
- Correlator Trigger (CL2) (Particle Flow)
- Global Trigger (GT) (with more complex algos)
- Resolution similar to offline level

- Collect and store the reconstructed particle primitives of the L1 processing chain at the full bunch crossing rate
- Enable study of exotic signatures that cannot be fit into the trigger budget
- Global Trigger decisions ⇒ sDS
- Correlator, Global Track, Global Calorimeter and Global Muon Trigger ⇒ sGS

Increased budget latency and rate:

- 3.8 µs → 12.5 µs
- 750 kHz of L1 output

Advanced object reconstruction on FPGA:

- Global Calorimeter Trigger (GCT) and Global Muon Trigger (GMT) (higher granularity)
- Global Track Trigger (GTT) (tracker tracks, vertex finding)
- Correlator Trigger (CL2) (Particle Flow)
- Global Trigger (GT) (with more complex algos)
- Resolution similar to offline level

- Collect and store the reconstructed particle primitives of the L1 processing chain at the full bunch crossing rate
- Enable study of exotic signatures that cannot be fit into the trigger budget
- Global Trigger decisions ⇒ sDS
- Correlator, Global Track, Global Calorimeter and Global Muon Trigger ⇒ sGS
- Can later be extended to include other systems in later stages ⇒ sLS

The physics potential of a Level-1 trigger Data Scouting system

Phase-2 L1DS main physics plans

- Use when possible to study with L1 resolution
- High combinatorics: $W \rightarrow 3\pi$, $D_s\gamma$, $H \rightarrow \rho\gamma$, $\phi\gamma$, ...
- High rate: multiple soft (b-)jets, displaced (soft) leptons, ...
- Heavy Stable Charged Particles (HSCPs) over multiple BXs

Monitoring at the bunch crossing rate

- L1 trigger pre-/post-firing without special configurations
- Per-bunch luminosity measurements

- Collect and store the reconstructed particle primitives of the L1 processing chain at the full bunch crossing rate
- Enable study of exotic signatures that cannot be fit into the trigger budget
- Global Trigger decisions ⇒ sDS
- Correlator, Global Track, Global Calorimeter and Global Muon Trigger ⇒ sGS
- Can later be extended to include other systems in later stages ⇒ sLS

The 40 MHz scouting system for Phase-2

Network link
Trigger link

--- Network link --- Trigger link

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 central DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 central DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1
- 2 × Xilinx Virtex Ultrascale+ VU35P FPGAs with 8 GB of HBM memory for output buffering
- **6** × 4 FireFly inputs / FPGA \Rightarrow 48 × 25 Gb/s total input (total: 1.2 Tb/s)
- 5 × QSFP outputs / FPGA \Rightarrow 10 × 100 Gb/s total output (nominal total: 800 Gb/s)

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 central DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1
- 2 × Xilinx Virtex Ultrascale+ VU35P FPGAs with 8 GB of HBM memory for output buffering
- **6** × 4 FireFly inputs / FPGA \Rightarrow 48 × 25 Gb/s total input (total: 1.2 Tb/s)
- 5 × QSFP outputs / FPGA \Rightarrow 10 × 100 Gb/s total output (nominal total: 800 Gb/s)

INT

Topical Workshop on Electronics for Particle Physics 2023

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 central DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1
- 2 × Xilinx Virtex Ultrascale+ VU35P FPGAs with 8 GB of HBM memory for output buffering
- **6** × 4 FireFly inputs / FPGA \Rightarrow 48 × 25 Gb/s total input (total: 1.2 Tb/s)
- 5 × QSFP outputs / FPGA \Rightarrow 10 × 100 Gb/s total output (nominal total: 800 Gb/s)

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 central DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1
- 2 × Xilinx Virtex Ultrascale+ VU35P FPGAs with 8 GB of HBM memory for output buffering
- **6** × 4 FireFly inputs / FPGA \Rightarrow 48 × 25 Gb/s total input (total: 1.2 Tb/s)
- 5 × QSFP outputs / FPGA \Rightarrow 10 × 100 Gb/s total output (nominal total: 800 Gb/s)
- Baseline scouting configuration (assuming a minimal zero suppression of 30%) fits in 7 × DAQ-800

Xilinx VCU128 development board

Development of needed firmware on Xilinx VCU128 development kit:

- 1 × Xilinx Virtex Ultrascale+ VU37P FPGA, similar to a DAQ-800 but with half the connectivity
- **6** × QSFP from mezzanine (*HT*-Global) \Rightarrow Up to 24 input links
- 4 × QSFP from board \Rightarrow Up to 4 × 100 Gb/s total output
- 2 × 4 GB HBM memory stacks, 16 × 256 MB slots / stack
- TCP/IP sender core near-identical to DAQ-800, receiver and pre-processing modules scouting-specific
- Development and validation in scouting Run-3 demonstrator

The L1DS Run-3 demonstrator

Run-3 demonstrator of the L1DS

For LHC Run-3, L1DS demonstrator to readout multiple sources of the CMS L1 trigger:

- Very heterogenous system
- 3 boards (KCU1500, SB-852, VCU128), different output technologies (DMA, TCP/IP)

Run-3 demonstrator of the L1DS

For LHC Run-3, L1DS demonstrator to readout multiple sources of the CMS L1 trigger:

- Very heterogenous system
- 3 boards (KCU1500, SB-852, VCU128), different output technologies (DMA, TCP/IP)

Run-3 demonstrator of the L1DS

For LHC Run-3, L1DS demonstrator to readout multiple sources of the CMS L1 trigger:

- Very heterogenous system
- 3 boards (KCU1500, SB-852, VCU128), different output technologies (DMA, TCP/IP)

Topical Workshop on Electronics for Particle Physics 2023

Xilinx VCU128 boards setup in Run-3 L1DS demonstrator

(a) Test setup in CMS DAQ laboratory

(b) Point 5 service cavern production system

Setup for VCU128 scouting boards:

- One Stop Systems PCIe bus to accomodate multiple PCIe boards
- 2 × 5 PCIe (3.0 × 16) Slot Expansion
- Control server connected to PCIe bridge for control and monitor of boards

Production system in P5 service cavern:

- 1st VCU128: connected to 12 × BMTF processors
- 2nd VCU128: connected to 6 × GT processors
- Both boards on same PCIe tree
- Output links from CMS service cavern → surface (~100m)

Firmware structure: optical link input data receiver and decoder

What are the trigger boards sending?

- Phase-2: proprietary protocol, 25 Gb/s links, 65b/67b
- Run-3: 10 Gb/s links, 8b/10b encoding
- **BX** data is a fixed record of 6 × 32b frames / link
- Data frames sent at 250 MHz

Firmware structure: optical link input data receiver and decoder

What are the trigger boards sending?

- Phase-2: proprietary protocol, 25 Gb/s links, 65b/67b
- Run-3: 10 Gb/s links, 8b/10b encoding
- **BX** data is a fixed record of 6 × 32b frames / link
- Data frames sent at 250 MHz

Input receiver and decoder:

- Receive up to 24 input links at 10 Gb/s
- Data recovered clock for each input link
- Input decoding (data/key/invalid words)

Firmware structure: optical link input data receiver and decoder

What are the trigger boards sending?

- Phase-2: proprietary protocol, 25 Gb/s links, 65b/67b
- Run-3: 10 Gb/s links, 8b/10b encoding
- **BX** data is a fixed record of 6 × 32b frames / link
- Data frames sent at 250 MHz

Input receiver and decoder:

- Receive up to 24 input links at 10 Gb/s
- Data recovered clock for each input link
- Input decoding (data/key/invalid words)

Input streams sync:

- Sync stream #n from data recovered clock...
- ...to HBM clock (250 MHz)

imin 🕖 🞽

BX counter and trailer gen

Rearrange, Tile and Algo (if any) **BX-wise input links aligner:**

Align using BX start (green) and known dimension (6 frames)

win 🕖 🞇 🔿

9/12

Data reduction

BX counter and trailer gen

Rearrange, Tile and Algo (if any)

Group links and Data Reduction:

Mark BX as "suppressed" based on condition (e.g. no valid muon stubs, no firing GT algo, ...)

. . .

. . .

. . .

Rearrange, Tile and Algo (if any)

BX counter and trailer generator:

- Pad to 256b frames (HBM alignment)
- Assign BX number, given known BX start (green)
- Add trailer at end of orbit with suppressed BX info

"Transpose" BX grouped data to 256b frames

■ Apply algo (e.g. neural network ⇒ hls4ml) and store in spare space (grey) or send to another stream

. .

Rearrange and algo (if any):

9/12

BX-wise input links aligner:

Align using BX start (green) and known dimension (6) frames)

Group links and Data Reduction:

Mark BX as "suppressed" based on condition (e.g. no valid muon stubs, no firing GT algo, ...)

BX counter and trailer generator:

- Pad to 256b frames (HBM alignment)
- Assign BX number, given known BX start (green)
- Add trailer at end of orbit with suppressed BX info

Reshape and algo (if any):

- "Transpose" BX grouped data to 256b frames
- Apply algo (e.g. neural network \Rightarrow hls4ml) and store in spare space (grey) or send to another stream

Rocco Ardino

Topical Workshop on Electronics for Particle Physics 2023

Packager:

- Encapsulation of *N* orbits in a "Scouting Block"
- Header and trailer added to block
- Fill HBM and handle backpressure

HBM write/read:

- HBM slots are 256b aligned and work at 250 MHz
- Reserve space for header, fill HBM with payload, after that write header in reserved space

HBM reading part connected to TCP logic

Output streams:

TCP streams are multiplexed

4, 6 or 12 streams per optical 100 GbE output

Packager:

- Encapsulation of *N* orbits in a "Scouting Block"
- Header and trailer added to block
- Fill HBM and handle backpressure

HBM write/read:

- HBM slots are 256b aligned and work at 250 MHz
- Reserve space for header, fill HBM with payload, after that write header in reserved space
- HBM reading part connected to TCP logic

Output streams:

- TCP streams are multiplexed
- 4, 6 or 12 streams per optical 100 GbE output

Rocco Ardino

Topical Workshop on Electronics for Particle Physics 2023

October 2, 2023

Resource usage and remarks

Legend:

- Trigger input links, alignment
- Processing (Zero Suppression, merging, algo, packager)
- HBM write/read, TCP logic
- 100 GbE output
- Monitoring (PCIe, I2C) and debug (ILA, VIO)

		VU37P		VU35P extrapolation	
Resource	Utilization	Available	Utilization %	Available	Utilization %
LUT	199478	1303680	15.30	871680	22.88
FF	328338	2607360	12.59	1743360	18.83
BRAM	490	2016	24.31	1344	36.45
URAM	48	960	5.00	640	7.50
DSP	6	9024	0.07	5952	0.10

Resource usage and remarks

Legend:

- Trigger input links, alignment
- Processing (Zero Suppression, merging, algo, packager)
- HBM write/read, TCP logic
- 100 GbE output
- Monitoring (PCIe, I2C) and debug (ILA, VIO)

		VU37P		VU35P extrapolation	
Resource	Utilization	Available	Utilization %	Available	Utilization %
LUT	199478	1303680	15.30	871680	22.88
FF	328338	2607360	12.59	1743360	18.83
BRAM	490	2016	24.31	1344	36.45
URAM	48	960	5.00	640	7.50
DSP	6	9024	0.07	5952	0.10

Remarks:

- Floorplan for 24 × input links, 12 × HBM slots, 3 × 100 GbE cores
- No machine learning algo included ($O(10^2 10^3)$ DSPs)
- TCP Streams to Dell R7515 machines (AMD EPYC 7502P 32-Core)
- TBB pipelines for DAQ software (receive, unpack and write raw data)

Level-1 Data Scouting is technically feasible:

- System planned for CMS Phase-2 upgrade (2029)
- DAQ-800 platform as trigger readout board
- Goal: real-time analysis and tiny events stored for later analysis

Level-1 Data Scouting is technically feasible:

- System planned for CMS Phase-2 upgrade (2029)
- DAQ-800 platform as trigger readout board
- Goal: real-time analysis and tiny events stored for later analysis

Run-3 demonstrator already collecting data:

- Started with Global Muon and Calo Trigger scouting
- Extending with BMTF and GT scouting
- Xilinx VCU128 board for Phase-2 fw development
- Public results: CMS-DP-2022-066, CMS-DP-2023-025
- A lot) More to come!

Level-1 Data Scouting is technically feasible:

- System planned for CMS Phase-2 upgrade (2029)
- DAQ-800 platform as trigger readout board
- Goal: real-time analysis and tiny events stored for later analysis

Run-3 demonstrator already collecting data:

- Started with Global Muon and Calo Trigger scouting
- Extending with BMTF and GT scouting
- Xilinx VCU128 board for Phase-2 fw development
- Public results: CMS-DP-2022-066, CMS-DP-2023-025
- (A lot) More to come!

Additional B&D for Phase-2:

- Test new technologies, e.g. "DAQ-800" board with Versal **HBM VH1782**
- New ideas for output link protocols. e.g. RoCEv2 (see Gabriele's talk)

Backup Slides

A new Compact Muon Solenoid experiment for High-Luminosity LHC

- Instantaneous luminosity of up to $7.5 \cdot 10^{34}$ cm⁻²s⁻¹, average number of pp collisions per bunch crossing up to 200
- Significant detector and hardware upgrade for Compact Muon Solenoid (CMS) experiment

Rocco Ardino

Topical Workshop on Electronics for Particle Physics 2023

Trigger data captured from spare outputs of L1T boards:

- Same 25 Gbps serial optical links and protocol used for the Level-1 interconnects
- Global Trigger (GT) decisions ⇒ sDS
- Correlator (CL2), Global Track (GTT), Global Calorimeter (GCT) and Global Muon Trigger (GMT) ⇒ sGS
- Can later be extended to include other systems in later stages ⇒ sLS

The physics potential of a Level-1 trigger Data Scouting system

Level-1 trigger Data Scouting at 40 MHz LHC bunch crossing rate

- Collect and store the reconstructed particle primitives of the L1 processing chain...
- ...at the full bunch crossing rate

Phase-2 L1 Data Scouting first physics thoughts/plans

- Enable study of exotic signatures that cannot be fit into the trigger budget
- Use when possible to study with resolution available at Level-1 trigger
- High combinatorics for the L1 budget: $W \rightarrow 3\pi$, $W \rightarrow D_s \gamma$, $H \rightarrow \rho \gamma$, $H \rightarrow \phi \gamma$, ...
- High rate for the L1 budget: multiple soft (b-)jets, displaced (soft) leptons, ...
- Slow or long-lived objects: Heavy Stable Charged Particles (HSCPs) across multiple BXs
- Scouting on the whole set of L1 tracks: Soft Unclustered Energy Patterns (SUEPs)

Monitoring at the bunch crossing rate

- Unaffected by issues in readout system, e.g., if detector is blocked due to excessively high rate from a trigger object
- Study Level-1 trigger pre- and post-firing without special trigger configurations
- Per-bunch luminosity measurements

Scouting with DAQ-800 hardware platform:

- CMS Phase-2 DAQ readout board with ATCA form factor
- Production starting in 2024, 5 prototypes will be available in 2024 Q1
- 2 × Xilinx Virtex Ultrascale+ VU35P FPGAs with 8 GB of HBM memory for output buffering
- **6** × 4 FireFly inputs / FPGA \Rightarrow 48 × 25 Gb/s total input (total: 1.2 Tb/s)
- **5** × QSFP outputs / FPGA \Rightarrow 10 × 100 Gb/s total output (nominal total: 800 Gb/s)
- Baseline scouting configuration (assuming a minimal zero suppression of 30%) fits in 7 × DAQ-800

Scouting system	Source	Links (baseline)	Links (upstream ZS)	fraction of DAQ-800 board inputs
sDS	GT	12	12	0.25
	GTT	24	24 + 48 (Tracks ZS)	0.5(+1)
	GCT	6	6	0.125
	GMT	18	18	0.375
	CL2	30	30 + 24 (PUPPLZS)	0.625 (+0.5)
sLS	CL1	216 (PUPPI)	<mark>84</mark> ι*) (PF η ≤3 ZS)	4.5 (1.75)
	Total	306	246	6.375 (5.125)

Topical Workshop on Electronics for Particle Physics 2023

4/5

Rocco Ardino

Firmware structure: machine learning inference

Deploy ML applications directly on FPGA in data scouting pipeline:

- hls4ml for generation of neural networks in Hardware Description Language
- Recalibration of Level-1 muon primitives: CMS-DP-2022-066
- Real-Fake Level-1 muon pair classification: CMS-DP-2022-066
- Muon barrel stub primitives fit (work in progress!)

Topical Workshop on Electronics for Particle Physics 2023