
F. E. BRAMBILLA

D. CERESA

J. DHALIWAL

S. ESPOSITO

K. KLOUKINAS

X. LLOPART

A. PULLI

SYSTEMC FRAMEWORK FOR ARCHITECTURE
MODELLING OF ELECTRONIC SYSTEMS
IN FUTURE PARTICLE DETECTORS

CONTEXT

2

IC TECHNOLOGY WORK PACKAGE (WP5)

MISSION: DEVELOP INTELLIGENCE ON DETECTOR SOLUTION

ELECTRONIC SYSTEM DESIGN FLOW IN HEP

3

Limitation of the currently used design flow:

• Based only on a low-abstraction level description of the system (hardware level).

• Architecture exploration is time and resources-heavy

• in multi-chip modules/detector, single chip are optimized separately

Physics req. Specification
Hardware

description

Verification environment

Implementation

Reference

model

Implementation metrics

(power, speed, area)

“Standard” design flow:

Architecture metrics

(Latency, efficiency,..)

ELECTRONIC SYSTEM LEVEL APPROACH

4

Develop a high abstraction level description of the system, from front-end to back-end, for:

• architecture exploration

• new feature development

• reference model development

Physics req. Specs.
Hardware

description

Verification environment

Implementation

Reference

model

Architecture metrics

(Latency, efficiency,..)

Implementation metrics

(power, speed, area)

Proposed design flow:

Virtual

protoyping

Architecture metrics

(Latency, efficiency,..)

5

Open source:

• The model is based on C++ and

• Performance analysis are based on Python

User-friendly:

• User and developer roles are separated

• The framework supports architectural and network

configurability (structure, memory, arbitration,

interconnections)

Reusable:

• Generalized layers and standardized packet transport (TLM)

• A library of layer types, functional components, and packet

transport types

• Common integrated metrics analyzer

PIXESL: AN ELECTRONIC SYSTEM LEVEL PROTOTYPING FRAMEWORK

PIXESL: AN ELECTRONIC SYSTEM LEVEL PROTOTYPING FRAMEWORK

6

Open source:

• The model is based on C++ and

• Performance analysis are based on Python

User-friendly:

• The framework supports architectural and network

configurability (structure, memory, arbitration,

interconnections)

• User and developer roles are separated

Reusable:

• Generalized layers and standardized packet transport (TLM)

• A library of layer types, functional components, and packet

transport types

• Common integrated metrics analyzer

PIXESL: AN ELECTRONIC SYSTEM LEVEL PROTOTYPING FRAMEWORK

7

Metrics analyzer Python-based

Input data

(physics data / event generator)

Latency Hit rate

FIFO occupancy Packet rate Front-end model

SystemC model

8

Metrics analyzer Python-based

Input data

(physics data / event generator)

Latency Hit rate

FIFO occupancy Packet rate Front-end model

SystemC model

PIXESL: AN ELECTRONIC SYSTEM LEVEL PROTOTYPING FRAMEWORK

9

Use the virtual prototyping framework to explore the Velo upgrade architecture:

• Run with real physics event

• Performed by a junior fellow and a master student with no experience in pixel ROC design

• Velopix model development ~ 1 month (first study case of PixESL)

Physics req. Specs. RTL

Verification environment

Implementation

Reference

model

Architecture metrics

(Latency, efficiency,..)

Implementation metrics

(power, speed, area)

Proposed design flow:

Virtual

protoyping

Architecture metrics

(Latency, efficiency,..)

LHCB VELO UPGRADE II ARCHITECTURE EXPLORATION

LHCB VELO UPGRADE II ARCHITECTURE EXPLORATION

10

The upgrade aims at a 4D pixel detector.

https://cds.cern.ch/record/2844669/

Main readout challenge:

extreme occupancy (x2 Velopix)

Flow:

Model Velopix (VELO upgrade I ROC)

Simulate higher occupancy events

Find bottlenecks

Optimize architecture

https://cds.cern.ch/record/2844669/

LHCB VELO UPGRADE II SIMULATIONS

11

PROPOSED

Velopix Proposed

Pixel 256x256 256x256

SP 128x128 128x128

Regions 64x8 128x8

EoC 64 (8 ch.) 128 (16 ch.)

VELOPIX

LHCB VELO UPGRADE II RESULTS

12

Velopix Proposed

Readout eff. 80 % 99.5 %

Avg. latency ~100 cy. ~20 cy.

13

Use a high-level description of the system to:

• Provide a self-contained prototyping environment

• Size the parameter of the new feature

Finally, design RTL and run implementation to get the full metrics.

Physics req. Specs. RTL

Verification environment

Implementation

Reference

model

Architecture metrics

(Latency, efficiency,..)

Implementation metrics

(power, speed, area)

Proposed design flow:

Virtual

protoyping

Architecture metrics

(Latency, efficiency,..)

ON-CHIP PACKET SORTING FEATURE DEVELOPMENT

ON-CHIP PACKET SORTING

14Out-of-order hit packets

Sort

&

Bin

Event frame of hit packets

Off-Chip

Datalinks

Problem: Data-driven readout provides out-of-order packets

Proposed solution:

Sort&Bin module accumulates hit packets over time and groups

them in bins based on event tag

Goals:

• Ordered packet readout

• Fixed latency

• Data reduction (~20 %)

ON-CHIP PACKET SORTING DESIGN SPACE EXPLORATION

15

Bin size

Target: Bin size > Max packets per event

The bin size depends on the maximum

number of hits (or clusters) per event

SystemC description of the module

ON-CHIP PACKET SORTING DESIGN SPACE EXPLORATION

16

Number of bins

Target: >90% grouping

The number of bin depends on the latency

of the readout efficiency and on the target

grouping efficiency

SystemC description of the module

ON-CHIP PACKET SORTING IMPLEMENTATION

17

Sort&Bin RTL developed and verified against the model:

• 64 Bins with 128 packets per bin

• Design based on Dual-Port foundry SRAM

Implemented in 28nm bulk technology

• Close timing at 320 MHz

• Power consumption: ~50 mW

• Area: 3.6 mm2

ON-CHIP PACKET SORTING IMPLEMENTATION

18

Sort&Bin RTL developed and verified against the model:

• 64 Bins with 128 packets per bin

• Design based on Dual-Port foundry SRAM

Implemented in 28nm bulk technology

• Close timing at 320 MHz

• Power consumption: ~50 mW

• Area: 3.6 mm2

Should fit in a pixel ROC periphery and

consume less than a 25 Gbps serializer

SUMMARY

19

PixESL is a valid tool for high-level modelling and virtual prototyping.

The framework presents an effective and quick approach:

• Workforce: ~1 fellow and 1 student

• Development time: ~3 months

• Modelling of Velopix: ~1 month

• Modelling of Sort&Bin: ~1 week

• Runtime: ~15 BX/s

FUTURE OUTLOOK

20

Development started in March 2023:

• Tool is in an early maturity stage

• More use cases and real applications help us target and review the development.

Model development is still ongoing:

• Cycle vs Event-based

• Test-bench generation

• Power estimation tool

• Front-end modeling

The release is expected for Q3-Q4 2024,

but we are open to developer or user direct collaboration.

THANKS!

DAVIDE.CERESA@CERN.CH

