Model and analysis of the data readout architecture for the ITS3 ALICE Inner Tracker System

ITS3 introduction

<u>ITS3</u>

- Wafer-scale Monolithic Active Pixel Sensors (MAPS)
- Cylindrical sensors of radii 18/24/30 mm

Architecture requirements (Stitching)

- Dies divided into 3,4 or 5 Segments
 - 2 endcaps on the edges
 - 12 Repeated Sensor Units (RSU)
 - 12 tiles per RSU

Data transfer on-chip to the left edge (26.6 cm)

On-chip readout scheme

On-chip readout scheme

Continuous trigger-less solution

End

frame 1

Start

frame 1

- Hits sent in time stamped packets (frame packet)
- Frame packets must be shipped out completed

ALICE

4

Collision information may be lost

depending on the number of detected hits

On-chip readout scheme

Continuous trigger-less solution

- Hits sent in time stamped packets (frames)
- Packets must be shipped out completed

Readout model objective:

- Define readout parameters
- Balance trade-offs across
 - Power consumption
 - Dead Area
 - Readout performance (fraction collisions dropped)

Proposed readout model

Emulate conditions in ALICE experiment

- Based on physics MC simulations
- Based on ALICE ITS2 data

Emulate future RTL implementation

- Clock accurate
- Fully parametrizable

Pixel hits generator, sources of particles

Pb-Pb collision

Pixel hits generator, sources of particles

QED (Quantum electro dynamics) electrons

- Generated by electromagnetic interaction between ions
- Photon emission recombine in electron-positron pair
- Electrons and positrons detected as background noise

Pixel hit generator, hit densities

- Collisions and QED distributed along vertex (z) by gaussian of RMS = 6cm.
- Particle flux from collisions in z=0, layer 0 of 2.95 MHz/cm²
- Particle flux from QED in z=0, layer 0 of 3.55 MHz/cm²
- Occupancy in 2 μs period of 2×10⁻⁴

Pixel hit generator procedure

- FOR_EACH frame period
 - Determine number of pile-up collision in frame period (random, Poisson)
 - FOR_EACH pile-up collision
 - Determine centrality
 - Determine vertex (z) position (random, Gaussian)
 - FOR_EACH region
 - Determine cluster size based on z
 - Calculate particle count based on z (random, Poisson)
 - Multiply particle count with cluster to get the number of pixel hits
 - QED electrons
 - Determine vertex (z) position (random, Gaussian)
 - FOR_EACH region
 - Determine cluster size based on z
 - Calculate particle count based on z (random, Poisson)
 - Multiply particle count with cluster to get the number of pixel hits

Results – Various regions and links

Parameters:

- 2 us frame period
- Link with left edge throughput 160 Mbit/s
- Results plotted for 1 Segment in Layer 0
- ITS3 requirement, 0.1% collisions dropped

Results – Cluster, interaction variations

Parameters:

 10^{-1}

 10^{-2}

10-3

 10^{-4}

 10^{-5}

32

64

96

• 2 us frame period

0.1%

• 1 Link with left edge throughput 160 Mbit/s

Fraction of collisions dropped

128

160

Memory depth

- Results plotted for 1 Segment in Layer 0
- Different cluster sizes in z=0
- Different integration rates

	ô		Option 1				
160 Mbit/s)=z) e	2.6	0.073%	0.103%	1.613%	38.200%	
Layer 0	er size	2.1	0.004%	0.043%	0.057%	1.667%	
/	luste	1.6	0.000%	0.000%	0.002%	0.004%	
	J		x0.5	x0.75	Base (164 kHz)	x1.25	
				Interact	ion rates		
opped	Option 2						
3 regions, 1 link per tile	e (z=0	2.6	0.004%	0.098%	4.207%	64.100%	
4 regions, 1 link per tile	r size	2.1	0.000%	0.003%	0.028%	8.535%	
4 regions, 2 link per tile	luste	1.6	0.000%	0.000%	0.000%	0.002%	
	Ū		x0.5	x0.75	Base (164 kHz)	x1.25	
		Interaction rates					
I I I		SELECTED Option 3					
	2						
) = (z=0	2.6	0.000%	0.023%	1.937%	64.100%	
192 224 256	er size	2.1	0.000%	0.003%	0.005%	5.167%	
th	luste	1.6	0.000%	0.000%	0.000%	0.000%	
	Ū		x0.5	x0.75	Base (164 kHz)	x1.25	
			Interaction rates				

Results – Number of segments

Parameters:

- 2 us frame period
- 1 Link with left edge throughput 160 Mbit/s
- Results plotted for **different chip dimensions**
- 4 regions, FIFO depth 160

Summary

Readout scheme:

- Input based in physics MC and ITS2 data
- Achieve trade-off between power consumption, area and readout performance

Configuration extracted from model:

- 1 link per tile with left endcap of 160 Mbit/s
- 4 FIFO memories per tile
- Each FIFO memory of **depth 160** words

Performance:

- 0.005% of collisions dropped per segment, 0.02% for Full Layer 0
- Achieve optimal trade-off with power consumption and area

mar. 03/10		HLICL
09:00	The Monolithic Stitched Sensor (MOSS) Prototype for the ALICE ITS3 and First Test Results	Gianluca Aglieri Rinella <i>Ø</i>
	Mistral Room	09:00 - 09:20
	Validation of the 65 nm TPSCo CMOS imaging technology for the ALICE ITS3	Chiara Ferrero 🥝
	Mistral Room	09:20 - 09:40
Tuesday poste	rs session	
	99. Prototype of a 10.24Gbps Data Serializer and Wireline Transmitter for the readout of TITS3 detector. ITS3 detector. Arseniy Vitkovskiy (Nikhef National inst, Dr. Arseniy Vitkovskiy (Nikhef (the Dutch N, Sr. Marcel Rossewij (Utre	the ALICE echt University),
jue. 05/10	Viduinii Giomov (Nikner National Inst	
i L	ALICE ITS3: a bent stitched MAPS-based vertex detector	Ola Slettevoll Groettvik 🥝
	Mistral Room	11:20 - 11:40
	Prototype measurement results in a 65nm technology and TCAD simulations towards more rac Corentin Lemoine	diation tolerant monolithi
Thursday post	Prototype measurement results in a 65nm technology and TCAD simulations towards more rad Corentin Lemoine ers session	diation tolerant monolithi

Backup

Variations among integration periods

Parameters:

- Various integration period
- Link with left edge throughput 160 Mbit/s
- Readout from matrix at 40 MHz
- Results plotted for 1 Segment
- 1 link, 4 regions

Observations:

- Higher integration period allocates more time for reading hits from matrix into memories
- Shorter integration period gives better time resolution and improves event reconstruction

Reduce speed from matrix to FIFOs

Parameters:

- Various integration period
- Link with left edge throughput 160 Mbit/s
- Readout from matrix at 20 MHz
- Results plotted for 1 Segment
- 1 link, 4 regions

Observations:

- Lower matrix to memory speed reduces the number of pixel hits that can be read during the integration period
- Performance of long integration periods is not affected

