

Compact Silicon Photonic Mach-Zehnder Modulators for High-Energy Physics

S. Cammarata^{a,b,c}, P. Velha^{b,d}, F. Di Pasquale^c, S. Saponara^a, F. Palla^b and S. Faralli^{b,c}

^a Dipartimento di Ingegneria dell'Informazione – Università di Pisa (Pisa, Italy),

^b Istituto Nazionale di Fisica Nucleare – Sezione di Pisa (Pisa, Italy),

^c Istituto di Intelligenza Meccanica – Scuola Superiore Sant'Anna (Pisa, Italy),

^d Dipartimento di Ingegneria e Scienza dell'Informazione – Università di Trento (Trento, Italy)

Correspondence simone.cammarata@phd.unipi.it

TWEPP 2023

Sant'Anna Scuola Universitaria Superiore Pisa

Outline

- Silicon photonic optical links in high-energy physics
- Silicon photonic modulators alternatives
- Folded Mach-Zehnder modulators design and characterization
 - Standard phase shifter
 - Rad-hard phase shifter
- Electro-optical bit-error-rate (BER) tests:
 - Standard vs. rad-hard comparison
 - CMOS-compatible driving
- Rad-hard FMZM ionizing irradiation results
- Conclusions

Introduction – Silicon Photonics for HEP (1/2)

• Optical links in HEP currently not routed down to innermost detector layers (bulky e-links)

Sant'Anna

INFN

stituto Nazionalo di Fisica Nuelos

- State-of-the-art readout modules (LpGBT, VTRX+) limited in radiation-hardness:
 - < 1 MGy TID(SiO₂)
 - < $1.10^{15} n_{eq}/cm^2$ fluence (1-MeV neutron equivalent DD)

Introduction – Silicon Photonics for HEP (2/2)

Sant'Anna

NFN

stituto Nazionalo di Fisica Nucle

Introduction – All-Silicon EO Modulator Alternatives

Sant'Anna

INFŃ

Istituto Nazionale di Fisica Nucleare

Metrics	Mach-Zehnder Modulator	Ring Modulator
Optical bandwidth	Broadband (if balanced)	Narrow-band (~ 1 nm)
Process/Temperature sensitivity	Robust	Active resonance control required

Introduction – All-Silicon EO Modulator Alternatives

Sant'Anna

INFŃ

Istituto Nazionale di Fisica Nucleare

Metrics	Mach-Zehnder Modulator	Ring Modulator
Optical bandwidth	Broadband (if balanced)	Narrow-band (~ 1 nm)
Process/Temperature sensitivity	Robust	Active resonance control required
Footprint	Large (mm -scale)	Small (10 µm -scale, w/o pads!)
Power consumption	Large (DC + RF: 10 pJ/bit -scale)	Small (RF: 10 fJ/bit -scale)
Common driving condition	Traveling-wave (RF terminated)	Lumped-element

Introduction – All-Silicon EO Modulator Alternatives

Sant'Anna

INFN

Istituto Nazionale di Fisica Nucleare

Metrics	Mach-Zehnder Modulator	Ring Modulator
Optical bandwidth	Broadband (if balanced)	Narrow-band (~ 1 nm)
Process/Temperature sensitivity	Robust	Active resonance control required
Footprint	Medium (100 µm -scale)	Small (10 μm -scale, w/o pads!)
Power consumption	Medium (only RF)	Small (RF: 10 fJ/bit -scale)
Common driving condition	Lumped-element	Lumped-element

[2 images from Rakowski, "Silicon Photonics Platform for 50G Optical Interconnects", Cadence Photonics Summit and Workshop 2017]

8

Lumped-element MZM Description

- Electrodes size should be much less than RF wavelength to avoid traveling-wave effects
- **Non-terminated** device: no DC power consumption and on-chip thermal dissipation

Lumped-element MZM Description

- Electrodes size should be much less than RF wavelength to avoid traveling-wave effects
- **Non-terminated** device: no DC power consumption and on-chip thermal dissipation
- Optical bandwidth limit: optical transit time
- Electrical bandwidth limit: RC charge-discharge

Sant'Anna

 $\frac{|V_{\rm pn}/V_S|}{\vec{0}} [{\rm dB}]$

 Z_S

-**50** Ω

40 Ω

stitute Nazionale di Fisica Nuclea

Electrical transfer function example

9

_ = 300 fF

 $_{\rm h} = 1100 \ \Omega$

 $C_{\rm hox} = 900 \, {\rm fF}$

Folded MZM Device Design

- Technology: Imec's iSiPP50G
- MZM with **meandered** phase shifters:
 - **1.5 mm**-long active length per MZM arm $(f_{3dB,opt} \sim 15 \text{ GHz})$
 - Unbalanced arm lengths: operating point tunable changing wavelength

Folded MZM Device Design

- Technology: Imec's iSiPP50G
- MZM with **meandered** phase shifters:
 - **1.5 mm**-long active length per MZM arm $(f_{3dB,opt} \sim 15 \text{ GHz})$
 - Unbalanced arm lengths: operating point tunable changing wavelength
 - Interdigitated electrodes: 460 μm x 240 μm footprint per MZM arm

Folded MZM Device Design

- Technology: Imec's iSiPP50G
- MZM with **meandered** phase shifters:
 - **1.5 mm**-long active length per MZM arm $(f_{3dB,opt} \sim 15 \text{ GHz})$
 - Unbalanced arm lengths: operating point tunable changing wavelength
 - Interdigitated electrodes: 460 μm x 240 μm footprint per MZM arm
- Test conditions:
 - Single-arm driving
 - No external 50 Ω termination

Folded MZM PN Phase Shifter Cross-sections

Convential design

P++ conc. ~ 50x P conc. N++ conc. ~ 50x N conc.

Folded MZM PN Phase Shifter Cross-sections

Convential design Rad-hard design Effective index change via charge carriers movement (PN-junction in SOI waveguide) SiO₂ SiO₂ 50 nm 300 300 450 nm 450 nm Radiation-hardening by design: nm nm 220 P+ 140 nm - Shallower etch nm 60 nm N++ 50 nm 450 nm - P-side doping increase SiO₂ SiO₂ ▶ 450 nm log(Hole density) [cm⁻³] log(Electron density) [cm⁻³⁻ Optical intensity [a.u.] log(Hole density) [cm⁻³] log(Electron density) [cm⁻³] Optical intensity [a.u.] 12 14 16 18 20 10 12 14 16 18 .6 .8 10 14 16 18 20 10 12 14 10 12 2.4 2.4 Reverse bias = 0.1 V Reverse bias = 0.1 V Standard **Rad-hard** 2.3 2.3 [*un*] 2.1 [*un*] 2.2 design design 450 nm 450 nm 300 nm 300 nm 5 5 1.9 1.9 -0.2 -0.6 -0.4 0.2 0.4 0.6 -0.4 -0.6 -0.2 0.6 0.2 0.4 $x \ [\mu m]$ $x \ [\mu m]$

P conc. \sim 1x N conc. P+ conc. \sim 10x P conc. P++ conc. \sim 50x P conc. N++ conc. ~ 50x N conc.

DC Electro-optic Characterization

• Tunable laser swept across C-band to capture performance metrics dependance on PN junction bias

Sant'Anna

 ∞

Pol.

INFN

λ-meter

stituto Nazionale di Fisica Nuclea

TLS

Small-signal Electro-optic Characterization

- Electro-optic -3dB bandwidths ranging from 6.5 to 8.5 GHz for both devices (bias-dependent)
- Test conditions: laser wavelength in C-band at MZM quadrature + optical amplification to recover from coupling optical losses

 ∞ **VNA** Bias Pol. **EDFA** TLS Source Control port 2 port 1 RF probe DUT Optical **EDFA** VOA photoRX

Filter

Sant'Anna

single-mode fiber

2.92 mm coaxial cable

VNA cal. ref. planes

- **Goal**: capture time-domain performances via eye diagrams and bit-error-rate (BER) analysis with respect to:
 - received optical power P_{RX} (constant OSNR)
 - bit-rate
- NRZ transmission system

- **Goal**: capture time-domain performances via eye diagrams and bit-error-rate (BER) analysis with respect to:
 - received optical power P_{RX} (constant OSNR)
 - bit-rate
- **NRZ** transmission system: PRBS 2⁷-1 pattern

- **Goal**: capture time-domain performances via eye diagrams and bit-error-rate (BER) analysis with respect to:
 - received optical power P_{RX} (constant OSNR)
 - bit-rate
- NRZ transmission system: PRBS 2⁷-1 pattern, RF amplification

- **Goal**: capture time-domain performances via eye diagrams and bit-error-rate (BER) analysis with respect to:
 - received optical power P_{RX} (constant OSNR)
 - bit-rate
- NRZ transmission system: PRBS 2⁷-1 pattern, RF amplification and on-chip probing with in-line RF attenuator

- **Goal**: capture time-domain performances via eye diagrams and bit-error-rate (BER) analysis with respect to:
 - received optical power P_{RX} (constant OSNR)
 - bit-rate
- NRZ transmission system: PRBS 2⁷-1 pattern, RF amplification and on-chip probing with in-line RF attenuator

Large-signal Results Standard vs. Rad-hard FMZMs

• 30 Gb/s error-free transmission with conventional design, while BER floors start to appear in rad-hard FMZM at 25 Gb/s due to comparatively higher $V_{\pi}L_{\pi}$

Sant'Anna

• Test conditions: ~ 4.4 V_{pp} (4 V_{bias}) driving on modulator pads, laser wavelength in C-band

Large-signal Results Low-voltage FMZM Operation

- Standard FMZM at **25 Gb/s** (operated in **quadrature**):
 - **7 dB** optical power penalty at KP4-FEC between 4.4 V_{pp} and 1.4 V_{pp} driving conditions
 - Energy consumption estimation at **25 Gb/s** :
 - ~ 120 fJ/bit for 1.4 V_{pp} driving
 - ~ 1.3 pJ/bit for 4.4 V_{pp} driving

6.5 ps

6.5 ps

100

35 Gb/s

5.5 ps

5.5 ps

Sant'Anna

TID Irradiation Results Rad-hard FMZM

- Rad-hard FMZM irradiated with 10 keV X-rays to 1.25 Grad(SiO₂) at 1 V reverse bias
- Phase shift versus TID extracted from optical spectra: phase shift enhancement followed by slow degradation
- No changes captured during room-temperature annealing

stituto Nazionale di Fisica Nucle

Sant'Anna

Conclusions

- Meandered-layout lumped-element-driven MZMs introduced for HEP applications
- Two device flavors presented:
 - Standard FMZM: deep-etch phase shifter design
 - Rad-hard FMZM: shallow-etch phase shifter design with reinforced P-side doping
 - Rad-hard version shows higher optical propagation losses and reduced modulation efficiency (trade-off with radiation hardness)
- > 25 Gb/s NRZ transmission validated for:
 - Both standard and rad-hard FMZM designs with **4.4 Vpp** driving with **< 1.10⁻⁹** BER
 - Standard FMZM with **1.4 Vpp** driving with **< 2.4.10**⁻⁴ BER, i.e., KP4-FEC threshold
- Rad-hard design proved to be radiation-tolerant till 1.25 Grad(SiO₂) TID with DC electro-optical testing

Thanks Stefano!

dedicated to Stefano Faralli (Scuola Superiore Sant'Anna and INFN Pisa)

Istituto Nazionale di Fisica Nucleare

Simone Cammarata

simone.cammarata@phd.unipi.it

Research Fellow Affiliated Researcher PhD Student

@ INFN – Italian National Institute for Nuclear Physics (Pisa, Italy) @ Institute for Mechanical Intelligence – Scuola Superiore Sant'Anna (Pisa, Italy) @ Dept. of Information Engineering – University of Pisa (Pisa, Italy)