

Test Bench of a 100G Radiation Hardened Link for Future Particle Accelerators

Francesco Martina, Sophie Baron, Paulo Moreira, Mateusz Baszczyk, Stefan Biereigel, Adam Klekotko, Szymon Kulis

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

- Introduction to the project *
- Novel concepts for high speed data communication *
- Emulation of the DART28 device on programmable logics *
- Firmware for the back-end electronics *
- Testing methodology and characterisation board *
- Board architecture and involved challenges *
- Conclusions $\mathbf{\mathbf{x}}$

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Data Links for Future Accelerators and Detectors

Front-End **Detectors**

1 PB/s

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Back-End **Data Readout**

Novel Concepts by EP-ESE Group

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

- 4x Lanes with NRZ symbols * of 25.6 Gb/s each
- Serialiser ASIC relying on * CMOS technology at 28 nm
- Exploitation of Silicon Photonics * Integrated Circuits
- Optical wavelength multiplexing * for band aggregation
- Low power and low mass *

Comparison with other solutions (@ 2021)

	Radiati	ion-hard	Non-radiation-hard (research)			Non-radiation-hard (commer				
Reference	LPGBT '21	GBTX '15	IBN	Л '19	Xilinx '21	Xilin: sca	k Ultra ale+	Intel F-S	Agilex eries	
Technology	65nm CMOS	130nm CMOS	14nm Fin-FET		7nm Fin-FET	16nm Fin-FET		10nm Fin-FET		4
Modulation	NRZ	NRZ	NRZ	PAM-4	PAM-4	NRZ	PAM-4	NRZ	PAM-4	
ata Rate [Gb/s]	10.24	4.8	64	128	112	32.75	58	32	58	
Radiation Hardness	200 Mrad	100 Mrad	Not ap	oplicable	Not applicable	Not ap	plicable	Not ap	oplicable	N
С	ERN So	Α								06

Overview of DART28 Architecture

The **DART28** (Demonstrator **A**SIC for **R**adiation-Tolerant **T**ransmitter in **28** nm) represents the proof of concept for fast data serialisation and driver

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

DART28 die

^{06/10/2023}

FPGA based Emulator

- Target agnostic HDL codes (Verilog) are ported to the FPGA;
- 2. Specific primitives are replaced with FPGA ones: transceivers, PLLs, I/Os;
- 3. Additional diagnostic cores can be added if required.

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

at System Level:

- To enable an effective test-bench engineering in view of the prototype delivery *
- To **test the RTL functionality** without the need for the actual ASIC *
- To qualify the equipment / components involved into the test-bench (QSFP modules, cabling, clocks, ...) *
- To tailor the own project features on the basis of commercially available solutions (Transceivers) *

at RTL design:

- It allowed to correct bugs in the RTL codes and to optimise the implementation of logics *
- The analysis of the codes from a different perspective and tools *
- To tune the initial device configuration *

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

6

Emulator Setup

An AMD VCU129 Evaluation Board has been adopted, featuring the Virtex UltraScale+ XCVU29P

Resource	Utilization	Available	Utilization %	GTM 56Gb/s PAM4 Transceivers	48
LUT	69551	1728000	4.02	GTY 28Gb/s Transceivers	32
LUTRAM	1213	791040	0.15		
FF	70990	3456000	2.05	100G / 50G KP4 FEC	24 /48
BRAM	64	2688	2.38	100G Ethernet w/ KB4 BS-FEC	15
DSP	280	12288	2.28		
10	14	448	3.13	Block RAM + UltraRAM (Mb)	454.5
BUFG	78	1344	5.80	DSP Slices	12 288
MMCM	8	16	50.00		12,200
PLL	1	32	3.13	System Logic Cells (K)	3,780

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

FPGA Key Specifications

Overall Back-End Firmware for Testing

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

DART28 Test-Bench Subjects

- The basic electrical behaviour of the device: **current / power consumptions** *
- Configuration environment: I²C access, register map operations *
- Time domain signal integrity of the high speed links (HST) : eye diagram, jitter analysis *
- Frequency domain signal integrity of HST: phase noise analysis *
- System level studies of data transmission with FPGA: bit error ratio analysis, FEC / Scrambler / Interleaver test *
- Detail analysis of the **embedded PLL** *
- Advanced features for the eye quality enhancement: **pre/post emphasis** *
- Device operation at different voltage / temperature corners *
- Production technology validation *
- Radiation test for Total Ionising Dose (TID) and Single Event Upset (SEU): X-Rays and Heavy-Ions *

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Key Features

- Wire-bonding support (layout + ENEPIG finish) *
- Ultra-low transmission loss Megtron 6 substrate *
- Length minimisation for the high speed lanes *
- High performance end-launch connectors *
- Access to the full features of the tested device
- Low noise power regulators on-board *
- High accuracy voltage / current monitors

- Temperature monitoring *
- Mechanically compatible with assembly and testing * equipment (wire-bounder, X-Rays, heavy-ions facility)

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Overview of the Board Electrical Architecture

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

0.76 - 1.38V VDDIO (all CMOS / LVDS I/O)

0.76 - 1.04V ➤ VDD (Core Logics / PLL) Ext SMAs / Header

0.76 - 1.04V VDDA (HSTs)

Assembled Board

Voltage Control Accuracy

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Clean Power Delivery and Monitoring

Wire-Bonding Support

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Mechanical Integration

	Letzte Änderung: 4x M4 Gewinde Hinzu im 55mm Quadrot 12.12012: THI			Anderungsdatum 12/11/12	Aluminium		^{aeriade} eloxiert. natur	
				Erstelldatur: 15/12/10 Alloemein	Bennenung: Oberplatte VR90			
	T	leranz vom mittigen Abstand 27.08.2012 THI	geändert.		Toleronzen ±0,imm / ±0,5° M=0.ch=b=1.1	Datei: B1651 Oberplatte	vR90JdH	^{Zaichungs Nr} B1651
					Seite 1 von 1	Ant	Franz und Fai TPT Wirebond Laurten von G	bion Hickmann BbR Br www.tpt.de 29a Tel-08181 55604
					Größe A3	ihi	85757 Karts	eld Fax: 08161 58654

X-Rays Head

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Wire-Bonding Optimisation

Support Plate for the Device

Wire-Bounded DART28

The high speed lanes require careful considerations at the layout design stage:

Characteristic impedance control

Single ended 50ohm coplanar micro-strip is chosen

End-Launch transition mitigation

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Routing Optimisation

Smooth routing to maintain geometry characteristics

performed by the CAD Softwares: Altium Designer and FreeCAD

Maximum manufacturing capabilities must be deployed 3 mil (75 µm) trace / gap width are extensively used

Top layer close to the DUT cut-out

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Production Issues

Risk of Over-Etching

Milling resolution at the limit

- A concept for a rad-hard 100G communication link in future HEP plants has been proposed *
- A first prototype of the serialiser and driver has been delivered in August and it is currently under test, * while the prototype for photonics will be delivered by the end of the year.
- The emulation activity has benefited both the system level and the design of the RTL logics *
- The development of the back-end firmware is * ongoing to fulfil all the required features
- Plans for the device testing have been stated and the * test-bench architecture is established
- The features of the board have met the requirements * and improvements for the future are underway
- Irradiation sessions have been booked for this year

Francesco Martina - Topical Workshop on Electronics for Particle Physics 2023

Questions? francesco.martina@cern.ch

