Single Event Effects characterization of a commercial 28 nm CMOS technology

TWEPP 2023

2023/10/07 - Geremeas

EP-ESE-ME <u>G. Borghello</u>, D. Ceresa, R. Pejašinović, F. Piernas Diaz, G. Bergamin and K. Kloukinas giulio.borghello@cern.ch

EP-R&D - WP5.1

https://ep-dep.web.cern.ch/sites/ep-dep.web.cern.ch/files/Report%20final_0.pdf

https://indico.cern.ch/event/1042567/contributions/4419842/attachments/2272167/3859068/PresentationIPBlocksForum V3_noAdditionalSlides.pdf

CERN & CMOS

data from:

 $https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm https://irds.ieee.org/editions/2022/more-moore$

ASICs in 28nm technology

list of Institutes that collaborate in 28nm-ASIC development projects with CERN

https://asic-support-docs.web.cern.ch//nda/

2023/10/05

giulio.borghello@cern.ch | CERN EP-ESE-ME - EP R&D WP5.1

TID effects in 28nm technology

- investigation of TID effects in 28 nm technology is at an **advanced stage** AMs in a commercial 28
- Borghello, G., et al. "Total ionizing dose effects on ring-oscillators and SRAMs in a commercial 28 nm CMOS technology." *Journal of Instrumentation* 18.02 (2023): C02003.
- M. Piller *et al.*, "Generic Analog 8 Bit DAC IP Block in 28nm CMOS for the High Energy Physics Community," *2022 Austrochip Workshop on Microelectronics (Austrochip)*, Villach, Austria, 2022, pp. 5-8, doi: 10.1109/Austrochip56145.2022.9940783.
- Bonaldo, Stefano, et al. "Influence of halo implantations on the total ionizing dose response of 28-nm pMOSFETs irradiated to ultrahigh doses." *IEEE Transactions on Nuclear Science* 66.1 (2018): 82-90.
- Zhang, Chun-Min, et al. "Characterization and modeling of Gigarad-TID-induced drain leakage current of 28-nm bulk MOSFETs." *IEEE Transactions on Nuclear Science* 66.1 (2018): 38-47.
- Zhang, Chun-Min, et al. "Characterization of gigarad total ionizing dose and annealing effects on 28-nm bulk MOSFETs." IEEE Transactions on Nuclear Science 64.10 (2017): 2639-2647.

•

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

What is the sensitivity to **Single Event Effects** (SEE) of **28nm** CMOS technology?

ANALOG IP BLOCKS

chips received mid 2022

2023/10/05

EXP28:SEE/ANA – TESTs

- Heavy-ions test at HIF (Louvain-La-Neuve, BE)
 - > 2 days of test end of November 2022

- Proton test at TRIUMF (Vancouver, CA) https://www.triumf.ca/pif-nif/proton-irradiation
 - 1 (long) day beginning of December 2022
 tested only EXP28-SEE

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

Test system developed by Risto Pejašinović and Francisco Piernas Diaz!

RADNEXT

EXP28:SEE/ANA – TESTs

• Heavy-ions test at HIF (Louvain-La-Neuve, BE)

https://uclouvain.be/en/research-institutes/irmp/crc/heavy-ion-facility-hif.html

> 2 days of test end of November 2022

Proton test at TRIUMF (Vancouver, CA)

https://www.triumf.ca/pif-nif/proton-irradiation

1 (long) day beginning of December 2022
tested only EXP28-SEE

RADNEXT

EXP28:SEE/ANA – HI TEST

2 days of test in November 2022

EXP28:SEE \rightarrow tested for all ions at $\theta = 0^{\circ}$ and 45°

OCX	ail					
ionu	M/Q	lon	DUT energy [MeV]	Range [µm Si]	LET [MeV/(mg/cm²)]	E
	3.25	¹³ C ⁴⁺	131	269.3	1.3	
	3.14	²² Ne ⁷⁺	238	202.0	3.3	
	3.37	²⁷ Al ⁸⁺	250	131.2	5.7	
	3.27	³⁶ Ar ¹¹⁺	353	114.0	9.9	
	3.31	⁵³ Cr ¹⁶⁺	505	105.5	16.1	
	3.22	⁵⁸ Ni ¹⁸⁺	582	100.5	20.4	
	3.35	⁸⁴ Kr ²⁵⁺	769	94.2	32.4	
	3.32	¹⁰³ Rh ³¹⁺	957	87.3	46.1	
	3.54	¹²⁴ Xe ³⁵⁺	995	73.1	62.5	

https://uclouvain.be/en/research-institutes/irmp/crc/parameters-and-available-particles.html

EXP28:ANA

→ several combination of ion/angle/voltage (more details later)

 \rightarrow fluence ~5x10⁶ ni/cm² for each ion/angle

RADNEXT

EXP28:SEE/ANA – TESTs

• Heavy-ions test at HIF (Louvain-La-Neuve, BE)

> 2 days of test end of November 2022

Proton test at TRIUMF (Vancouver, CA)

https://www.triumf.ca/pif-nif/proton-irradiation

1 (long) day beginning of December 2022
 tested only EXP28-SEE

RADNEXT

EXP28:SEE/ANA – PROTON TEST

1 (long) day beginning of December 2022

test n.	1	2	3	4	5	6	7
chip	А	А	А	А	В	В	В
energy [MeV]	480	480	480	480	480	480	480
fluence [cm ⁻² × 10 ⁹]	174	182	184	184	183	184	184
flux [cm ⁻² ×10 ⁶ /s]	520	130	1300	1300	1300	1300	1300

T\//FPP 2023-	Single Eve	nt Effects	characterization	of a	commercial	28 nm	CMOS	technology
IVVEFF ZUZJ.	SINGLE EVE	IL EHEUS	CIIdIdCLEIIZALIOII	UI d	COMMERCIAL	20 11111	CIVIUS	lecinology

- 2 chips (A, B)
- 2 energies (480, 350 MeV)

test n.	8	9	10	11	12	13	14	15	16	17	18
chip	В	В	В	В	В	В	А	А	А	А	А
energy [MeV]	350	350	350	350	350	350	350	350	350	350	350
fluence [cm ⁻² ×10 ⁹]	90	183	183	184	184	90	184	184	64	385	385
flux [cm ⁻² ×10 ⁶ /s]	256	256	640	640	640	128	640	640	128	640	640

RADNEXT

first comprehensive overview of the SEE sensitivity of 28nm CMOS technology

- ✓ minimum distance between D-flip-flop to avoid MBU
- ✓ cross section of DFF for HI and protons
- ✓ cross section of foundry SRAMs for HI and protons
- ✓ MBU evaluation in scrambled SRAMs
- ✓ evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- cross section and pulse length for SET with HI and protons
- ✓ multi-SET
- ✓ sensitivity to Single-Event-Latch-UP

first comprehensive overview of the SEE sensitivity of 28nm CMOS technology

- ✓ minimum distance between D-flip-flop to avoid MBU
- ✓ cross section of DFF for HI and protons
- ✓ cross section of foundry SRAMs for HI and protons
- ✓ MBU evaluation in scrambled SRAMs
- ✓ evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- cross section and pulse length for SET with HI and protons
- ✓ multi-SET
- ✓ sensitivity to Single-Event-Latch-UP

- minimum distance between D-flip-flop to avoid MBU
- evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- pulse length of SET for HI and protons
- sensitivity to Single-Event-Latch-UP

• minimum distance between D-flip-flop to avoid MBU

- evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- pulse length of SET for HI and protons
- sensitivity to **Single-Event-Latch-UP**

MULTI-BIT-UPSET

Single-bit-upset (SBU)

Multi-bit-upset (MBU)

TRIPLICATION

15 μm typically used in **65nm** technology

Stefan Biereigel: Investigations on Multi-Bit Upsets in 65nm CMOS (https://indico.cern.ch/event/959655)

What is the minimum distance between DFF to avoid MBU in **28nm** technology?

EXP28:SEE

SINGLE EVENT EFFECT (SEE)

	CAPZO H
	SEE 🚦
2 mm	
	8
2 mm	
<u>Connenee</u> ee	

3 test structures:

• 7 matrices of D-flip-flops

• 4 foundry SRAMs

single- and multi-bit-upsets (SBU, MBU)

• 16 chains of inverters + vernier detector Single-event-transient (SET)

EXP28:SEE

SINGLE EVENT EFFECT (SEE)

2 mm	Exp28 SEE
2 mm	

- 3 test structures:
- 7 matrices of D-flip-flops
- 4 foundry SRAMs

single- and multi-bit-upsets (SBU, MBU)

• 16 chains of inverters + vernier detector _ single-event-transient

EXP28:SEE – DFF

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

EXP28:SEE – DFF – MBU – protons

2023/10/05

giulio.borghello@cern.ch | CERN EP-ESE-ME - EP R&D WP5.1

EXP28:SEE – DFF

~6 μm spacing between DFFs drastically reduces probability of MBU!

- key information for triplication strategy!
- ~2.5 times less than the 15 μm typically used in 65nm technology!

dimensions as drawn

2023/10/05

EXP28:SEE – DFF – MBU

DFF

DFF

Т

A P T

A P

т

DFF

DFF

0

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

F	DF	F
DFF ^A	DF	F

DFF	T A P	DFF
DFF	T A P	DFF
DFF	T A P	DFF

DFF	T A P	DFF
DFF	T A P	DFF

dimensions as drawn

EXP28:SEE - DFF - MBU - HI

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

 * 3.22 μm for matrix 1

max MBU length = 2

DFF	T A P		T A P		∩ %
DFF	T A P	DFF	T A P	DFF	U /0 0/469

	T A P	
DFF	T A P	DFF

0/469

DFF	T A P	DFF
	T A P	DFF

0%

0/469

dimensions as drawn

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

EXP28:SEE – DFF – MBU – protons

*3.22 μm for matrix 1

max MBU length = 2

DFF	T A P	DFF	T A P	DFF	
	T A P	DFF	T A P	DFF	0/57

EXP28:SEE – DFF

~6 μm spacing between DFFs drastically reduces probability of MBU!

- key information for triplication strategy!
- ~2.5 times less than the 15 μm typically used in 65nm technology!

dimensions as drawn

 evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data

```
heavy-ions test:
```

- ☺ large statistic (many errors in a short amount of time)
- ☺ easier to trigger **single-event-latch-up** (SEL)

Inot representative of the radiation environment in particle detectors

EXP28:SEE – DFF – σ – protons

EXP28:SEE

SINGLE EVENT EFFECT (SEE)

	Fyp20
2 mm	SEE
∠ mm	Ţ

3 test structures:

• 7 matrices of D-flip-flops

• 4 foundry SRAMs

single- and multi-bit-upsets (SBU, MBU)

• 16 chains of inverters + vernier detector (SFT)

EXP28:SEE – SRAM

- 6 4096x32b single-port
- 14 2048x32b single-port UHD
- **4** 4096x32b dual-port
- 6 4096x32b dual-port UHD

Total active area: 0.76 mm²

EXP28:SEE – SRAM – σ – protons

D. Ceresa, G. Borghello, G. Bergamin, F. Piernas Diaz, R. Pejašinović, K. Kloukinas

- minimum distance between D-flip-flop to avoid MBU
- evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- pulse length of SET for HI and protons
- sensitivity to **Single-Event-Latch-UP**

EXP28:SEE

SINGLE EVENT EFFECT (SEE)

	Exp28
	SEE -
2 mm	
2	
2 mm	
<u>Concessos</u>	

3 test structures:

• 7 matrices of D-flip-flops

• 4 foundry SRAMs

single- and multi-bit-upsets (SBU, MBU)

• 16 chains of inverters + vernier detector Single-event-transient (SET)

EXP28:SEE – SET

VERNIER DELAY LINE TEST STRUCTURE :

Measure cross-section for transient

Estimate transient length vs let

Detect multiple-transient

Fully digital implementation

Fast readout through differential lines

Sensitive area ~400 x 80 um2 with minimum size inverters

M. Glorieux et al., "Detailed SET Measurement and Characterization of a 65 nm Bulk Technology," in IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 81-88, Jan. 2017, doi: 10.1109/TNS.2016.2637935. P. Huang et Al, "Heavy-Ion-Induced Charge Sharing Measurement With a Novel Uniform Vertical Inverter Chains (UniVIC) SEMT Test Structure," in IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3330-3338, Dec. 2015

D. Ceresa, G. Borghello, G. Bergamin, F. Piernas Diaz, R. Pejašinović, K. Kloukinas

- minimum distance between D-flip-flop to avoid MBU
- evaluation of a method to predict SEEs rate in the accelerator environment using heavy-ion data
- sensitivity to Single-Event-Latch-UP

Single-Event Latch-UP (SEL)

SEL test structure

Letch-up sensitivity depends on doping levels (which cannot be changed) and **distance between wells**

40 structures with different combinations of X_{NWPS} , X_{SS} , X_{PWNS}

EXP28:ANA – HI

ion	angle [°]	LET [MeV/(mg/cm ²)]	fluence [10 ⁶ ni/cm ²]	voltage
Ni	0	20.4	23.3	VDD (0.9 V)
Ni	45	28.85	16.2	VDD
Kr	45	45.82	11.4	VDD
Хе	0	62.5	51.6	VDD
Rh	45	65.2	11.4	VDD
Хе	45	88.39	6.2	VDD
Хе	45	88.39	45.0	1.15*VDD
Хе	75	241.48	1.72	1.15*VDD
	high LET, high voltage			

SEL test structure

Letch-up sensitivity depends on doping levels (which cannot be changed) and distance between wells

40 structures with different combinations of X_{NWPS} , X_{SS} , X_{PWNS}

No SEL in any of the structures for any for the tests!!!

CONCLUSIONS

D. Ceresa, G. Borghello, G. Bergamin, F. Piernas Diaz, R. Pejašinović, K. Kloukinas

first comprehensive overview of the SEE sensitivity of 28nm CMOS technology

- $\checkmark~5~\mu m$ distance to avoid MBU in DFF
- ✓ validation of model to estimate of proton cross section from HI tests
- ✓ SET pulse length for heavy-ions and protons

✓ no SEL for any structure/LET

- + cross section of DFF and 4 foundry SRAMs for HI and protons
- + MBU probability of DFF and 4 foundry SRAMs for HI and protons
- + MBU evaluation of scrambled SRAM
- + cross section for SET with HI and protons
- + multi SET

EXTRA SLIDES

EXP28 CHIPS SUITE

D. Ceresa, G. Borghello, F. Piernas Diaz, R. Pejašinović, G. Bergamin, K. Kloukinas

SINGLE EVENT EFFECT (SEE)

ANALOG IP BLOCKS

chips received mid 2022

Goal:

- experience the design flow
- characterize the 28nm CMOS technology

 performance and radiation response

HI vs PROTONS

sensitive area (where cells are located) p interacts with material (Si and/or metal) ->HI generated isotropically

EXP28 SEU: SINGLE EVENT UPSET ON SEQUENTIAL ELEMENTS

Test structure derived from a multi-bit upsets test structure in 65nm (Stefan Biereigel, https://indico.cern.ch/event/959655)

- 7 matrices of 4096 DFF continuously clocked, D tied to Q.
- 9 tracks, different flavors.

Rad-Hard data processing and readout.

- 1 input line for clock (640MHz).
- 1 output line for data (16-bits packet at 640MHz).
- SEU detected readout FF reset.
- In case of MSEU, an arbiter ensures priority.

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

EXP28:SEE – DFF – cross section (σ)

giulio.borghello@cern.ch | CERN EP-ESE-ME - EP R&D WP5.1

$\mathsf{EXP28}:\!\mathsf{SEE}-\mathsf{SRAM}-\sigma-\mathsf{HI}$

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology **EXP28:SEE – SRAM – cross section – HI**

comparable or slightly better than 65nm

3 MBU/8 HITS = 37.5% : probability that a particle triggers an MBU (P_{MBU})

MBU length increases with LET

similar to HI @ 5.7 MeV/(mg/cm²)

$\mathsf{EXP28}:\mathsf{SEE}-\mathsf{DFF}-\sigma-\mathsf{HI}$

 $\rightarrow \text{Weibull fit} \longrightarrow \sigma = \sigma_0 \left(1 - e^{-\left[\frac{LET - LET_0}{W_\sigma}\right]^s} \right)$ form HI to representative environment DFF - matrix 0 ($f \simeq 5 \times 10^6 \,\mathrm{ions/cm^2}$ DFF - matrix 3 ($f \simeq 5 \times 10^6 \text{ ions/cm}^2$ DFF - matrix 1 ($f \simeq 5 \times 10^6 \text{ ions/cm}^2$) DFF - matrix 2 ($f \simeq 5 \times 10^6 \text{ ions/cm}^2$) 10^{-1} 10^{-8} 10^{-1} 00 Δ $^{-01}$ $\sigma_{\mathrm{DFF}}^{-10}$ [cm²] 10 10^{-} 10° $1 \ \sigma_{
m DFF} \ [
m cm^2]$ $1 \over \sigma_{
m DFF} \, [{
m cm}^2]$ 10^{-10} $\frac{10^{-10}}{10^{-10}}$ o $\sigma_0 = 3.62 \mathrm{n}$ $\sigma_0 = 2.31 n$ $\sigma_0 = 3.47 \mathrm{n}$ $\sigma_0 = 3.72 n$ $LET_{0} = 20.0 \, \mathrm{p}$ $|LET_0 = 8.0p|$ $LET_{0} = 14.0p$ $LET_0 = 56.0 \mathrm{p}$ $W_{\sigma} = 21.97$ $W_{\sigma} = 21.97$ $W_{\sigma} = 21.97$ $W_{\sigma} = 21.97$ LET-LET01 LET-LET0 1 $\int LET - LET_0 1^s$ $LET - LET_0 1^s$ $\sigma = \sigma$ $\sigma = \sigma_0$ = 1.0= 1.0= 1.0 10^{-1} 10^{-1} 10^{-11} 10^{-11} 102030 405060 102030 40 5060 10203040 5060 0 102030 405060 0 0 0 $\rm LET_{eff}\,[MeV/(mg/cm^2)]$ $LET_{eff} [MeV/(mg/cm^2)]$ $LET_{eff} [MeV/(mg/cm^2)]$ $LET_{eff} [MeV/(mg/cm^2)]$ Huhtinen, M., and F. Faccio. DFF - matrix 4 ($f \simeq 5 \times 10^6 \,\mathrm{ions/cm^2}$) DFF - matrix 5 ($f \simeq 5 \times 10^6 \,\mathrm{ions/cm^2}$ DFF - matrix 6 ($f \simeq 5 \times 10^6 \,\mathrm{ions/cm^2}$) 10^{-} 10^{-} 10^{-8} Single Event Upset rates in an 10^{-9} $^{-90}_{-10} \, {\rm Gm^2}_{-10}$ $^{-01}$ σ_{DFF} [cm²] σ_{OFF}] $\sigma_{\rm DFF} \left[{\rm cm^2} \right]$ 450.1 (2000): 155-172. $\sigma_0 = 3.11$ n $\sigma_0 = 3.81 n$ $\sigma_0 = 3.24 n$ 10^{-} $LET_0 = 283.0 \text{m}$ $LET_{0} = 38.0 \text{p}$ $LET_0 = 36.0 \text{p}$ $W_{\sigma} = 21.59$ $W_{\sigma} = 21.97$ $W_{\sigma} = 21.97$ LET-LET0 [LET-LET0] [LET-LET0] $\sigma = \sigma_0$ = 1.0 $\sigma = \sigma_0$ $\sigma = \sigma_0$ = 1.0s = 1.0 10^{-12} 10^{-11} 10^{-11} 0 102030405060 0 102030405060 0 102030405060 $m LET_{eff} [MeV/(mg/cm^2)]$ $LET_{eff} [MeV/(mg/cm^2)]$ $LET_{eff} [MeV/(mg/cm^2)]$

EXP28:SEE – SRAMs (HI)

~ independent of bit value

EXP28:SEE – SRAM – MBU

somewhere else

scrambled address:

32-world bits scrambled around the SRAM

bits of the same world physically separated

 $\mathbf{\nabla}$

in the SRAM another bit b1/w0 b1/w1 b1/w2 b1/w3 b1/w4 b1/w5 b1/w6 b1/w7

difficult to have multi-bits-upset on the same word

EXP28:SEE – SRAM – MBU

same bit/different words

b0/w0	b0/ w1	b0/w2	b0/w3	
b0/w4	<mark>b0/</mark> w5	<mark>b0/w6</mark>	<mark>b0/</mark> w7	

different bits/different words

	<mark>b0/</mark> w0	b0/w1	<mark>b0/</mark> w2	<mark>b0/w3</mark>
$\langle \neg \rangle$	<mark>b0/</mark> w4	<mark>b0/</mark> w5	<mark>b0/</mark> w6	<mark>b0/</mark> w7
	bN/w8	bN/ w9	bN/w10	bN/ w11

different bits/same word

MBU type B

EXP28:SEE - SRAM - MBU - HI

same bit/different words				
	<mark>b0/</mark> w0	b0/ w1	<mark>b0/</mark> w2	b0/w3
	b0/w4	<mark>b0/</mark> w5	<mark>b0/w6</mark>	b0/w7

different bits/same word

<mark>b0/</mark> w0	b0/ w1	<mark>b0/</mark> w2	<mark>b0/w3</mark>
<mark>b0/</mark> w4	<mark>b0/</mark> w5	<mark>b0/w6</mark>	<mark>b0/</mark> w7

...

2023/10/05

giulio.borghello@cern.ch | CERN EP-ESE-ME - EP R&D WP5.1

different bits/different words

b0/w2

b0/w6

bN/w10

b0/w3

b0/w7

b**N/**w11

b0/w1

b0/w5

bN/\

b0/w0

b0/w4

bN/w8

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

EXP28:SEE – SRAM – MBU – protons

EXP28 SEE: SINGLE EVENT TRANSIENT

Simulation results

Requires process calibration with Ring-Oscillator Transient length range up to 1 ns (typical) Transient minimum detection ~ 25 ps (typical)

giulio.borghello@d

2023/10/05

EXP28:SEE - SET - HI

EXP28:SEE – SET (HI)

Multi-SET only of high LET

RD53^{*}: triplicated clock tree with skew for SET filtering

 $https://indico.cern.ch/event/1038992/contributions/4363708/attachments/2256379/3829070/LHCC_RD53_June2021.pdf$

*readout chips for the ATLAS and CMS pixel detector (https://rd53.web.cern.ch/)

recently measured in chips for ALICE and LHCb! (130nm CMOS technology)

[1] Mahmood S.M., Roeed K., ALICE Collaboration Collaboration, "Investigation of single event latch-up effects in the ALICE SAMPA ASIC", PoS, TWEPP2018 (2019), p. 023 5 p, 10.22323/1.343.0023, URL https://cds.cern.ch/record/2710375

- [2] Lemos Cid E., Vázquez Regueiro P., "The VeloPix ASIC test results", PoS, Vertex 2017 (2018), p. 052, 10.22323/1.309.0052
- [3] Faccio, Federico. "ASIC survival in the radiation environment of the LHC experiments: 30 years of struggle and still tantalizing." NIMA (2023)

EXP28 ANA: GENERAL DESIGN GUIDELINE

SINGLE EVENT LATCHUP:

EVALUATE MINIMUM DISTANCE BETWEEN SUBSTRATE CONTACTS

REQUIRES PER CELL POWER MEASUREMENT

RE-USE POWER GATING CELL FROM RING-OSCILLATOR

WITH AND WITHOUT DEEP N-WELL

Annotated diagram of the PNPN SEL test structure showing terminal names, terminal values, and linear dimensions

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

TWEPP 2023: Single Event Effects characterization of a commercial 28 nm CMOS technology

heavy ions and proton test: end of 2022/beginning of 2023

beam time obtained through RADNEXT (for free)

https://radnext.web.cern.ch/