

TWEPP 2023 Topical Workshop on Electronics for Particle Phyiscs

Oct. 2 – 6, Geremeas, Sardinia

Design and performance of the front-end electronics of the charged particle detectors of PADME experiment

> Simeon Ivanov, Sofia University

On behalf of the PADME collaboration

Supported by Bulgarian National Roadmap for Research Infrastructures - object CERN and STRONG 2020 TARI-LNF

The PADME Experiment

Search for the Dark Photon

- Hypothesis
 - Dark sector with a vector mediator A' weakly coupled to SM
 - Wide range of mass and couplings
 - Potentially can explain other physics problems (muon g-2 anomaly, ⁸Be anomaly, etc.)
- Method
 - Missing mass in decays to the dark sector from positron annihilation on a thin target
 - $M^2_{miss} = (p_{e^+} + p_{e^-} p_{\gamma})^2$
 - Need only to determine initial and final state (and remove noise)

The PADME Experiment

Experiment summary

- Located at LNF, Italy
- LINAC accelerator
 - Beam properties
 - up to 600MeV, tunable
 - <1% energy dispersion</p>
 - 49 bunches/s from 10 to 200 ns
 - up to 2.5e4 e⁺/bunch
- e⁺e⁻ annihilation on optimized thin target
- Signal vs. noise: noise consists mostly from charged particles

The PADME Experiment

Additional Physics Programme

- X-17 particle
 - Hypothetical heavy invisible particle, decays to e⁺e⁻ pair
 - Method: number of secondary pairs compared to initial state number
 - Padme detector was easily reconfigurable for this search
- Cross-section observations:
 - 3-way gamma annihilation
 - bremsstrahlung

The Charged Particle Veto

The Veto Detectors

- Role:
 - Bremsstrahlung background suppression
 - Registration of visible decays
- Requirements:
 - Momentum resolution: 5MeV or better
 - Time resolution: 1ns or better
- Characteristics
 - Plastic scintillators 10x10x178mm³, glued-in WLS fiber
 - 96 in e⁻ veto, 90 in e⁺ veto, 16 in HEP veto
- Readout Electronics
 - SiPM front-end electronics inside vacuum chamber
 - Hamamatsu S13360 3x3mm2 25um cells
 - Power supply/analog readout modules

The veto detectors front-end electronics

- Requirements
 - Fast, ensuring the time resolution, required by the veto detectors
 - Low thermal dissipation
 - Remotely configurable and controllable
- General Architecture
 - 4 4-channel pre-amplifier cards operate in vacuum chamber
 - Differential analogue signals sent to control unit
 - Control of operation using I^2C
 - Telnet/HTTP command interface

ADNE

Single Channel Design

Design Overview

- 4 independent channels per board
- Each channel is composed :
 - Programmable shunt regulator
 - Fixed gain(=4) preamplifier
- Differential 100Ω output analog signal
- Measurement of the current in the detector
- Measurement the temperature of the detectors
- Single supply voltage
- Low power dissipation

EQUIVALENT CIRCUIT

Preamplifier Design

Design and Performance of the Front End Electronics of the Padme Charged Particle Vetos

PADME

Balanced Driver Stage

Performance Overview

- Fixed Gain = 4
- Differential output at 100Ω
- 70MHz Bandwidth
- Excellent stability with $C_{in} < 500 pF$
- Repetition rate > 1MHz
- Pulse resolution: better than 10 ns

- Output signal range = 1V
- Total noise with Cin 2pF equivalent = 2nV/√Hz
- Input protection = 300mJ
- Single power supply = 8V
- Dissipated power for channel = 35mW

Amplitude and Phase Characteristics

Design and Performance of the Front End Electronics of the Padme Charged Particle Vetos

PADME

Shunt Linear Regulator

Design and Performance of the Front End Electronics of the Padme Charged Particle Vetos

PADME

Power Supply

Linear Regulator Details

- Adjustment range of out voltage: 0 to 95V
- Accurancy writing and reading voltage: 16 bit
- Local feedback high stability: 1/000
- Current protection (adjustable): default 300uA
- Thermal stability, theoretical: 50ppm

- Dissipated power V_{in} at 100V: 30mW
- Rejection to the input voltage: 60dB
- Response load variation: 100us
- Maximum input voltage: 200V
- Noise to the maximum load: 2mVpp
- Control digital I2C 2wire

13/17

PCB Design and Board View

Multi-layer PCB

- 8 Layer PCB
- Isolated dissipation area to gnd power by means of bridge resistors
- Thermal control through PCB plans (necessary for vacuum operation)
- Theoretical value of the maximum power dissipation, per board with 4 channels online: 400mW

Controller Hardware

Design Overview

- Standard Nim realization
- Arm Cortex3 CPU for the control software
- Ethernet port for operation
- Diagnostics USB port
- 16 I2C control lines with peripheral buffers
- Power distribution to the front end
- Integrated primary high voltage generator
- Integrated control panel in the firmware

DB37-2

MO

ŏ

0

0

Conne

MALE

CON37

Calibration and Performance

Timing Characteristics

- Time resolution between any two SiPM channels: ~300 ps
- Time resolution between neighboring scintillators: ~700 ps
- Time resolution between veto system and the rest of the detector system (SAC): ~750 ps

ADINE

Calibration and Performance

PADME

Power Dissipation and Thermal Performance in Vacuum

- Power consumption per channel: ~125mW, for a total of 12W per veto station (96 channels), 2 veto stations in vacuum
- Only passive cooling used (braided copper wire to mounting)
- Temperatures recorded for extended periods of time show an increase of ~8 degrees over ambient temperature in range 20-30C, well within the tolerance of all system components

Conclusion

FEE electronics developed at LNF

- Low-power, low-noise, high-speed
- Performs within the experiment design parameters without fancy chips
- Allows fully automated control and management
- Reliable performance in vacuum
- Minor mechanical issues in the prototype versions