The LHCb VELO Upgrade II: design and development of the read-out electronics

Antonio Fernández Prieto (IGFAE)

On behalf of the LHCb VELO upgrade 2 collaboration

Outlook

- Overview of LHCb and VELO upgrade II
- System & readout challenges
- ASICs
 - TimeSPOT
 - PicoPix

LHCb upgrade phase II

XUNTA

MINISTERIO DE CIENCIA E INNOVACIÓN

3

LHCb VELO upgrade phase II

XUNTA DE GALICIA

MINISTERIO DE CIENCIA

VELO upgrade phase II

MINISTERIO DE CIENCIA E INNOVACIÓN

Timing needed to maintain PV Efficiency ~20ps per track => <50ps_{rms} hit <50ps_{rms} => σ^2_{sensor} (40 ps)+ σ^2_{ASIC} (30ps) Sensor R&D. (More details here) LGAD, 3D, Planar ASIC R&D

Scenarios

Scenario A (Sa)

- Same distance as U1 (5.1mm to beam)
- Same Pixel size as U1 (55µm x 55µm)
- Rad hard: **3GRad**
- ASIC Bandwidth: >250Gb/s

Scenario B (Sb)

- Far from beam (12.5mm)
- Reduce pixel size (42μm x 42μm)
- Rad hard: 400MRad
- Reduce foil material budget or operate in the LHC vacuum
- ASIC Bandwidth: >94Gb/s

System & readout

LHCb & VELO upgrade II readout

Same readout architecture philosophy as upgrade I

- Triggerless (@ 40MHz)
- Readout units populated with a PCIe card that collects the FE data

Readout units

E INNOVACIÓN

High precision timing distribution will be critical

E. Mendes TWEPP22

Assuming similar conditions to upgrade I

- Layout, number of ASICs, Similar sensor area ... Link constraints
- Sa => Module avg ~860Gb/s
- Sb => Module avg ~350Gb/s

Bandwidth constraints

• FE ASIC data reduction is required

Data transmission

Data transmission inside the detector

- ~1m in vacuum
- Radiation environment
- Flexible substrate

Current solution are Flex tapes. But high speed (20-30GHz) will make it not feasible (Losses ~20dB)

DART28 (Demonstrator ASIC for Radiation-Tolerant Transmitter in 28nm) M.K. Baszczyk F. Martina

Silicon photonics

- CERN PICs (<u>C. Scarcella TWEPP22</u>)
- INFN FALAPHEL (S. Cammarata)

FE ASICs

Requirements & FE ASICs R&D

TimeSPOT (INFN)

Small scale (32x32 pixel) demonstrator

- 55um x 55um pitch
- Built and tested
- Developing a larger sensor 64X64 matrix
- 28 nm CMOS

Requirement	scenario ${\cal S}_A$	scenario ${\cal S}_B$
Pixel pitch [µm]	≤ 55	≤ 42
Matrix size	256×256	335×335
Time resolution RMS [ps]	≤ 30	≤ 30
Loss of hits [%]	≤ 1	≤ 1
TID lifetime [MGy]	> 24	> 3
ToT resolution/range [bits]	6	8
Max latency, BXID range [bits]	9	9
Power budget [W/cm ²]	1.5	1.5
Power per pixel [µW]	23	14
Threshold level [e ⁻]	≤ 500	≤ 500
Pixel rate hottest pixel [kHz]	> 350	> 40
Max discharge time [ns]	< 29	< 250
Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$	> 250	> 94

PicoPix (CERN, NIKHEF)

Small scale (64x64 pixel) demonstrator.

- Derived from TimePix Family
- Design open to meet pixel pitch of Scenario A and Scenario B
- 28 nm CMOS
- Submission expected in Q2 2024

Challenging

TimeSPOT

Presented last year by A.Lai

1024 channels, each equipped with Analog Front-End and **TDCs (Vernier Architecture)**

- 256 channels are read-out by a ROT (ReadOut Tree)
 - Addresses incoming data to 2 serializers driving a LVDS driver each data out @1.28 Gb/s
 - 8 data output lines ٠
- 8 DACs giving Voltage references to the Analog Front-End
- Controlled over I2C
- Total time resolution around 50ps ±15ps

MINISTERIO DE CIENCIA E INNOVACIÓN

12

TimeSPOT

DAQ manager (KC705) ECS d d d d d d d

- Test beam @SPS, May 2023 Poster A. Loi Tuesday
 - First tracks with a 28-nm based system were acquired and reconstructed
 - 5 stations (3D silicon and 3D diamond sensors)
 - System issues being improved: improve bias voltage, stability problems (power consumption & data transmission)
- **Limitations** related to the global optimization of the chip (disc. voltage baseline, reference clock distribution)
- Working on a 64x64 matrix, based on a repeatable tile structure 8x8 pixels
 - End of the '23 beginning of '24
- Test chip submitted in July '23 (expected for November '23). Architectural studies
 - Test basic structures
 - Tests on ECS configuration, TDC calibration, readout

S. Cadeddu Tuesday

PicoPix- Design & challenges

Designed as a "real" **small scale prototype** to avoid to get false expectations on final design:

- Analog FE, Pixel readout, Pixel data clustering
- Several parts based on TimePix (Slow control, Pixel groups, clock distribution, etc.)
- Single Event Effect robust architecture

Target track resolution of <20ps_{rms} => (sensor + ASIC) <50ps_{rms} => ASIC < 30ps_{rms}

- Power consumption vs time resolution
- The power drop along the pixel must be minimized to avoid top-down effect!
 - Systematic IKRUM mismatch=> ToT mismatch and gain mismatch
 - Solution
 - TSVs (better uniformity, but more expensive & complex)
 - Reduce number of rows
 - On-pixel power compensation

2.88 mm

Scenario B

64x64 45um

— 3.456 mm —

Scenario A

64x64 54µm

3.456

SuperPixel Analog Arbitratio Packet SP Pixel Matrix EOC

PicoPix - Readout architecture

See Davide's Talk on Tuesday

1 Analog island:

• 4 Analog FE + 4 Discriminator

1 TDC per analog island (or-ed input) Arbitration:

- Large charge pixel in a cluster is the master
- Works across SuperPixels in all directions Hitmap (8 bits around master with hit) Formatter. ToT information with 24.4ps resolution

ww

SWM

Bandwidth optimization

Mandatory to filter undesired data as upstream as possible. Ongoing bandwidth optimization studies:

- Perform on chip Clustering
 - 1 data packet per cluster
 - Master arbitration by ToT
- Filtering of large events. Events >3x3 pixels are outside LHCb acceptance
- Data sorting (by timestamp) on the periphery
- Combined estimated data reduction ~85% (~600Gb/s => ~86 Gb/s)

Periphery

L M

15

Conclusions

- Timing is essential for the VELO U2 (4D tracking, etc.)
- Starting challenging ASIC R&D
 - Time resolution of 30ps
 - Limited power budget (<1.5-2W/cm²) -
 - Not module replacement is foreseen => <1Grad
 - Pixel Pitch $>45\mu$ m. Below that is hard the design for Sensors, ASIC design and data rate

Two prototypes of FE ASICs

- TimeSPOT
 - Reached a time resolution of 50ps
 - New submission with larger matrix (64x64) on the way
- **PicoPix**
 - Exploring new readout schemes
 - Expected submission by Q2/2024
- Exploring alternatives for reading out the module at high speed (~25Gb/s) in vacuum

Thank you

Questions?

LHCb upgrade 2

A EV

PicoPix - DCO

Explored the idea of the on-pixel free-running DCO with event-by-event calibration:

- With 3 bits oscillation control •
- Using 7T cells with extracted parasitic

Advantages:

- No control voltage distributed along the column
- Systematic effects can be suppressed ٠

XUNTA DE GALICIA

- Faster oscillation times and lower dynamic power \rightarrow better time resolution ٠ **Disadvantages:**
- Requires DCO calibration measurement=> data bandwitdth!

	freq	Phases	Phase mismatch [max-min]	LSB	Area	power
Timepix4 VCO	640 MHz	8	~25%	195ps	~350µm²	~500µW
PicoPix DCO	2-3 GHz	10	< 5%	50-33ps	~38µm²	~150µW

MINISTERIO DE CIENCIA

Time resolution

Requirement	scenario ${\cal S}_A$	scenario ${\cal S}_B$
Pixel pitch [µm]	\leq 55	≤ 42
Matrix size	256×256	335×335
Time resolution RMS [ps]	≤ 30	≤ 30
Loss of hits [%]	≤ 1	≤ 1
TID lifetime [MGy]	> 24	> 3
ToT resolution/range [bits]	6	8
Max latency, BXID range [bits]	9	9
Power budget $[W/cm^2]$	1.5	1.5
Power per pixel [µW]	23	14
Threshold level [e ⁻]	≤ 500	≤ 500
Pixel rate hottest pixel [kHz]	> 350	> 40
Max discharge time [ns]	< 29	< 250
Bandwidth per ASIC of $2 \text{ cm}^2 \text{ [Gb/s]}$	> 250	> 94
	Requirement Pixel pitch [μm] Matrix size Time resolution RMS [ps] Loss of hits [%] TID lifetime [MGy] ToT resolution/range [bits] Max latency, BXID range [bits] Power budget [W/cm²] Power per pixel [µW] Threshold level [e ⁻] Pixel rate hottest pixel [kHz] Max discharge time [ns] Bandwidth per ASIC of 2 cm² [Gb/s]	$\begin{tabular}{ c c c c c c } \hline Requirement & scenario S_A \\ \hline Pixel pitch $[$\mu$m $]$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$

Challenging!

MINISTERIO DE CIENCIA

doable

Single plane resolution of <50ps $_{\rm rms}$ => $\sigma^2_{\rm sensor}$ + $\sigma^2_{\rm ASIC}$ σ^{2}_{ASIC} (30ps _{rms}) => $\sigma^{2}_{analooFE}$ + $\sigma^{2}_{conversion}$ + σ^{2}_{clock} $\sigma_{\text{conversion}}^2 \Rightarrow \frac{TDC_{bin}}{\sqrt{12}} \Rightarrow TDC_{bin} = 40 \text{ps} \Rightarrow 11.5 \text{ ps}_{\text{rms}}$ σ_{clk}^2 => reference level at pixel=> 10ps_{rms} $\sigma_{AFF}^2 => <25 ps_{rms}$

PicoPix data filtering

PicoPix TSV

).	Pixel A	Pixel B
V _{GND} [mV]	45	90
V _{GND_KRUM} [mV]	45	61
Peaking time [ns]	1.71	2.27
I _{DS} (M _{INPUT}) [μΑ]	17.3	11.9
σ _{τοΑ} (ps r.m.s)	12	24
I _{KRUM} [nA]	98	69
ToT [ns]	42	68

	140		
V _{GND} [m	- 120		
V _{GND_KRUM}			
Peaking tim	100		
I _{DS} (M _{INPUT})	- 80		
σ _{τοΑ} (ps r.	- 60		
I _{KRUM} [n.	- 40		
ToT [ns			
	20		
	0		

	Pixel A	Pixel B
V _{GND} [mV]	8	14
V _{GND_KRUM} [mV]	8	14
Peaking time [ns]	2.06	2.1
I _{DS} (M _{INPUT}) [μΑ]	17.3	16.5
σ _{τοΑ} (ps r.m.s)	9	11.5
I _{KRUM} [nA]	98	82.6
ToT [ns]	42	49

PicoPix on-pixel power compensation

Temperature	Pixel close to periphery	Pixel close to beam
-40°C	14 ps	25 ps
27°C	14.5 ps	29 ps
60°C	17 ps	34 ps

MINISTERIO DE CIENCIA E INNOVACIÓN

GFAF

USC

XUNTA

CSA transient response for 20ke⁻ input charge at T={-40, 25, and 60 °C} with on-pixel power drop compensation

Temperature	Pixel close to periphery	Pixel close to beam
-40°C	14 ps	13.5 ps
27°C	14.5 ps	13 ps
60°C	17 ps	16 ps

TimeSPOT: next steps

High expected power per pixel (LHCb max rate, 38µW/ch)

Better clock distribution (reference clock jitter)

Time resolution of the analogue front-end is better than 20ps or below by design

• Discriminator baseline voltage baseline issue for low voltages

Next step: Larger matrix with improved time resolution

- Through Silicon Vias (TSV) being investigated for power and clock distribution, and data transmission
 - Efforts will be continued by the IGNITED

TimeSPOT: more

Signal and TDC test pulse capabilities allow time resolution measurements for the analogue an ^{120,0} TDC contributions

- Digital and analogue services distributed to 2x16 pixel blocks
- No dead area (reduced pixel pitch)

USC

Hit Rate [kHz]

FE ASICs control and timing distribution

We need a fanout control ASIC for the VeloPix 2

- The avaliable ASIC is the IpGBT and most probably the only one avaliable in LS4 timeline.
- Some possible issues:
- Only 4 PSCLK (to be taken in account for the future) (8 in GBTx).
- Min delay 50 ps. It is possible to have the alignment below 50 ps in the VeloPix 2 ?
- Similar radiation damage as the GBTx (far from FE ASIC)
- Higher rates that GBTx on the eports (80 MHz, 160 MHz).
- How to have a low jitter timing reference?

We recently acquired a VLDB+ to integrate the control with PicoPix

Upgrade I readout architecture

27

