From 3D to 5D tracking: SMX ASIC-based Double-Sided Micro-Strip detectors for comprehensive space, time, and energy measurements

Maksym TEKLISHYN², Adrian RODRIGUEZ RODRIGUEZ², Marcel BAJDEL^{1, 2}, Lady Maryann COLLAZO SANCHEZ^{1, 2}, Ulrich FRANKENFELD² Johann HEUSER², Hans Rudolf SCHMIDT^{2, 3}, Joerg LEHNERT², Shaifali MEHTA³, Dairon RODRIGUEZ GARCES^{1, 2}, Dario Alberto RAMIREZ ZALDIVAR^{1, 2}, Christian Joachim SCHMIDT², Alberica TOIA^{1, 2}

 1 Goethe-Universität (Frankfurt), 2 GSI (Darmstadt), 3 Eberhard Karls Universität Tübingen,

October 6, 2023

TWEPP 2023 Topical Workshop on Electronics for Particle Physics

Silicon Tracking System of the CBM experiment

core detector for rare probes of compressed nuclear matter in high-rate heavy-ion collisions

- $\blacktriangleright \lesssim 700$ tracks in aperture /interaction, high granularity
- low momenta \rightarrow low material budget $(2 8\% X_0)$
- $\Delta p = 1 2\%$ (evt. in B=1T)
- ▶ spatial (< 30 μ m) + timing (< 5 ns) + amplitude (15 fC/5 bit) in free-streaming mode

m.teklishyn@gsi.de

nXYTER: ASIC that measures time and amplitude

nXYTER was a dedicated ASIC for (ToF and Imaging) neutron detectors

one of applications: double-sided Silicon micro-strip detector (coupled to a Gadolinium neutron-converter layer)

nXYTER: ASIC that measures time and amplitude

▶ nXYTER was a dedicated ASIC for (ToF and Imaging) neutron detectors

one of applications: double-sided Silicon micro-strip detector (coupled to a Gadolinium neutron-converter layer)

two paths after CSA: slow (amplitude) and fast (time)

Analogue memory, external ADC required

m.teklishyn@gsi.de

Latest Generation: STS-MUCH-XYTER v 2.2

Features of the ASIC:

- Low-power, self triggering AISC
- 128 channels + 2 test channels
- Time resolution $\lesssim 5 \, \mathrm{ns}$
- Provides digitized hits with:
 - 5 bit energy resolution
 - 14 bit time stamp
- Linearity range up to 15 fC (100 fC)
- Flash ADC + digital buffer integrated in ASIC

K. Kasinski et al Nucl.Instrum.Meth.A 908 (2018)

Current status:

- ► ASIC production yield 98.5%–99.0%, chip cable yield 96%
- \blacktriangleright production: ~ 4000 available for series module production
- 360 dies per wafer, 100 wafers produced

STS/MUCH-XYTER2 ASIC

Amplitude measurement with SMX flash ADC

5-bit flash ADC (Analog-to-Digital Converter)

- 1 ADC/channel
- 5-bit resolution
- ▶ $2^N 1$ comparators
- Up to 15 fC (100 fc) in STS (MUCH) mode
- Trimming circuit with 8-bit resolution
- Diagnostic counter for each discriminator

Detector module components and construction

DSDM silicon micro-strip sensors

- Double sided n-type silicon sensors (XY positioning): 1024 strips each side, p-side tilted by 7.5° to the edge
- Thickness $320 \,\mu \mathrm{m} \pm 15 \,\mu \mathrm{m}$
- Pitch size $58\,\mu{
 m m}$ for both sides
- 62 mm × 22 mm, 42 mm, 62 mm or 124 mm
- Strip coupling capacitance (n) 14.1 ± 0.1 pF/cm interstrip capacitance 0.37 ± 0.01 pF/cm

m.teklishyn@gsi.de

5/26

Ultra-thin r/o micro cables

FEE connected via micro-cable lines (64) lines/cable)

- 2×1024 ch./sensor: stack of 32 micro cables per module, 8 sub types
- Length from 160 mm to 495 mm

Read-out lines are protected w/ shielding layers

FEB mechanical and electrical features

solder stop mask pads to maintain distance to aluminum cooling fin

- Data lines + clock: 40 or 100 lines (FEB8_2/FEB8_5)
 - HV decoupling w/ capacitors
 - ZIF connector for data cable

- Ground interfaces through PCB to cooling fin
 - service connector for testing
 - permanent soldering at the edge to the flat LV cable + coax. HV cable

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors

Powering and grounding of the STS FEE

 ${\rm LV}/{\rm HV}$ channels and voltage stabilization

Schematics of FEB-8 v3+:

- AC coupling capacitors for FEB operation at bias potential
- Two low voltage lines with 1.2 V and 1.8 V are powering ASICs
- Custom low-noise LDOs are used for stabilization of the voltage
- Return path circuit for HV and GND implemented on a FEB since v3

m.teklishyn@gsi.de

Powering and grounding of the STS FEE

return path circuit

- Dedicated circuit with discrete components:
 - filters HV potential
 - stabilization of the floating HV potential
 - between module sides (crucial for noise performance)
 - to the GND point (important for synchronization)

Optimisation of the values of the components followed

Return path circuit: from concept to implementation

Few iterations of design and prototyping:

Return path circuit is a part of the current FEB8 design

m.teklishyn@gsi.de

Composition and assembly of the detector module

- STS detector modules are produced in the assembly centres in GSI and KIT
 - highly integrated objects: extensive testing at each step

Composition and assembly of the detector module

- STS detector modules are produced in the assembly centres in GSI and KIT
 - highly integrated objects: extensive testing at each step

Successful pre-series production for the E16 J-PARC experiment

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors

Module calibration and tests

Calibration procedures for the SMX ASIC

To develop a calibration procedure for the ADC and FAST discriminator that allows to achieve:

linear behavior

homogeneous response among all channels

- absolute charge calibration
- Uses the internal test charge generation
- Should be fast, accurate, reproducible and scalable to series production

How to calibrate the flash ADC?

- Performing a threshold scan for every discriminator (31 disc/channel).
- Finding the middle point (50%) in the discriminator response for a fix injected charge

Example of ASIC calibration

unique for each ASIC and calibration range

Findings

- Calibration ensures linearity and reduces the spread among the channels up to 10 times
- \blacktriangleright Cross-checked using external pulse generator and $^{241}\mathrm{Am}$ source
- Procedure established for module production/ setup operation
- Stable over time (Long run stability tests)

Example of ASIC calibration

threshold equalisation

 Calibration of the measuring circuits on each ASIC is one of the first steps during the evaluation of the module performance after assembly

Findings

- Verification of the calibration algorithms and circuits as in previous versions
- ADC linearity achieved in the measuring range
- Spread among channels reduced 10 times after calibration
- Homogeneous performance for both polarities

m.teklishyn@gsi.de

SMX slow path gain after the calibration

- After the charge calibration the output in ADC-units is proportional to the injected charge
- Linear calibration
- Constant gain across dynamic range:

- Non-linear calibration possible
 - fine resolution at lower amplitudes?

Noise measurement in the SMX ASIC

Equivalent Noise Charge (ENC) derived from an S-curves scan in every channel, where the discriminator response is evaluated in a pulse amplitude scan

- The response function of each discriminators in a channel are fitted with erfc.
 - µ represents the effective discriminator threshold
 - σ represents the ENC value in units of the internal pulse generator

Overall noise performance

Low noise (\simeq dark rate) is essential for the free-streaming detector operation

Lower noise of the broken channels used for QA purposes m.teklishyn@gsi.de
Space, time and energy with DSDM MS detectors

Signal in the detector: test with ⁹⁰Sc

Source ⁹⁰Sr/Y

- Beta-emitter
- electron with spectrum larger than 1 MeV
- · placed at the center of the sensor

Data taken with CBM GBTx-based DAQ chain

Vladimir Sidorenko Oct 2 TWEPP2023

Cluster: Charge vs Channels

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors

Signal in the detector: test with ²⁴¹Am

- Ultimate test of the detector amplitude response
- Cross-check of the detector calibration

Studies and experience are summarised in the paper submitted to NIM:

mSTS: functional full-scale detector prototype

- ▶ Two tracking stations (layers) $12 \times 12 \text{ cm}^2$ and $18 \times 18 \text{ cm}^2$ arranged by 4 units
- Ultimate test of the detector performance in the fully integrated system
- Commissioning of the assembling and testing procedures to be used in series production
- Hit/track reconstruction performance with the heavy ions in mCBM@SIS18 (GSI, Darmstadt)

m.teklishyn@gsi.de

mSTS: recent beam-test highlights

Dario A. Ramirez Zaldivar at VERTEX 2023

Sensor alignment translations are consistent with the mechanical assembly!

mCBM HRE >96.88% Excluding inactive areas

Testing the free-streaming data acquisition system; data transport to a high-performance computer farm

Online track and event reconstruction as well as event selection algorithms

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors

STS goes to Japan: synergy with E16 experiment

K. Ozawa @ 42th CBM Collaboration Meeting, September 28 2023

E16 STS installation, commissioning and tests

10 modules are used in the E16 experiment at J-PARC

Sensor, ladder, cable

Test Chamber

Obtained Profile

K. Ozawa @ 42th CBM Collaboration Meeting, September 28 2023

5M UrQMD Au Au $10A \,\mathrm{GeV}$ events

Analysis by Iouri Vassiliev and Maksym Zyzak for the CBM Collaboration

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors

October 6, 2023

25 / 26

Summary, present and future use

System characteristics

- ▶ $320 \,\mu\mathrm{m}$ thick sensor ($\simeq 3\% X_0$)
- $\Delta X \simeq 58/\sqrt{12}\,\mu{\rm m}$ or better
- FEE up to 0.5 m away
- amplitude up to 15 fC (100 fC) in 31 bin
- time $\Delta t \simeq 5 \, \mathrm{ns}$
- self-triggering for each channel

Current status:

- Series production started for CBM STS
- Various pre-series batches under study
 - cosmic ray telescope

Applications (present and future):

- Core tracker of the fixed-target future heavy ion CBM experiment at FAIR
- First tracking layer of E16 at JPARC
- Reaction-product/beam monitor for radiation treatment
- ► We are open for new ideas!

Back-up slides

Silicon micro-strip detectors

STS assembly sequence and structure

STS DAQ chain

Return path circuit

component value optimisation

Slow channel, $C_{3, 4}$ value scan $R_{1, 2} = 1 k\Omega$ (left), $R_{1, 2} = 10 k\Omega$ (right):

Fast channel, $C_{3, 4}$ value scan $R_{1, 2} = 1 k\Omega$ (left), $R_{1, 2} = 10 k\Omega$ (right):

Return path circuit

component value optimisation

Slow channel, R_3 value scan $R_{1,2} = 1 k\Omega$ (left), $R_{1,2} = 10 k\Omega$ (right):

Fast channel, R_3 value scan $R_{1,2} = 1 k\Omega$ (left), $R_{1,2} = 10 k\Omega$ (right):

October 6, 2023

Space, time and energy with DSDM MS detectors

m.teklishyn@gsi.de

4/6

Channel-to-channel noise of the module

- Module ENC derived from S-curves scan, where the discriminator response is evaluated in a pulse amplitude scan
- "Higher ENC level in first p-side channels caused by interconnections via a double metal (Z channels)

Noise dependence on the SMX settings

ENC levels stable for a large range of settings

m.teklishyn@gsi.de

Space, time and energy with DSDM MS detectors