Hybrid Detector for Microdosimetry (HDM) readout and experimental results

E. Pierobon, M. Missiaggia, V. Monaco, C. Schuy, C. La Tessa

TWEPP 2023

Trento Institute for Fundamental Physics and Applications

Kaiser, Adeel et al. 10.3791/58372.

Very localized dose deposition

Kaiser, Adeel et al. 10.3791/58372.

- Very localized dose deposition
- It is possible to create a uniform dose as sum of Bragg peaks

- Very localized dose deposition
- It is possible to create a uniform dose as sum of Bragg peaks
- Ideal when a sensitive target is on the edge

• The dose delivery is planned with the help of a software: the Treatment Planning System (TPS)

 The dose delivery is planned with the help of a software: the Treatment Planning System (TPS)

• TPS requires information particle specie and energy - radiation quality

 The dose delivery is planned with the help of a software: the Treatment Planning System (TPS)

• TPS requires information particle specie and energy - radiation quality — Particle Particle

Particle type Particle energy

 The dose delivery is planned with the help of a software: the Treatment Planning System (TPS)

 TPS requires information particle specie and energy - radiation quality —

– Particle type Particle energy

• Good description of the radiation quality will result in a better TPS plan

Radiation damages occurs at cellular level

- Radiation damages occurs at cellular level
- The most sensitive region is the DNA inside the cell nucleus

- Radiation damages occurs at cellular level
- The most sensitive region is the DNA inside the cell nucleus
- Energy deposition has to be described at a micrometric scale (cell nucleus size)

- Radiation damages occurs at cellular level
- The most sensitive region is the DNA inside the cell nucleus
- Energy deposition has to be described at a micrometric scale (cell nucleus size)

Curtesy of Martina Quartieri

um

 $y = \frac{Energy\ deposited}{MCL}$

Energy deposited y =MCL

Energy recorded in the detector

Mean Chord Length: average particle track length in isotropic and uniform radiation field

Energy recorded in the detector

Mean Chord Length: average particle track length in isotropic and uniform radiation field

Energy recorded in the detector

Length:

average

Energy deposited Mean Chord MCL particle track length in isotropic and uniform radiation field

v =

All particles are assumed to travel the same distance

Energy deposited

MCL

Energy recorded in the detector

Mean Chord Length: average particle track length in isotropic and uniform radiation field

All particles are assumed to travel the same distance What if we use the **real track length? To provide a better radiation quality description**

6

Energy deposited

MCL

Energy recorded in the detector

Mean Chord Length: average particle track length in isotropic and uniform radiation field

All particles are assumed to travel the same distance What if we use the **real track length? To provide a better radiation quality description**

 $MCL = \frac{2}{2}d$

Energy deposited

MCL

Energy recorded in the detector

Mean Chord Length: average particle track length in isotropic and uniform radiation field

All particles are assumed to travel the same distance What if we use the **real track length? To provide a better radiation quality description**

A tracker is needed

Strip is activated

Strip is activated

• Strip detector

- Strip detector
- Low (1-100) gain is customizable depending on the doping

- Strip detector
- Low (1-100) gain is customizable depending on the doping
- Thin sensor down to 70 um. High radioresistence

- Strip detector
- Low (1-100) gain is customizable depending on the doping
- Thin sensor down to 70 um. High radioresistence
- Fast sensor: signal pulse ≈ 1 ns

Readout

- 2 x Zmod ADC 1410; 14 bits resolution, ± 25V
- Fully customizable system
- Extra channel available

Tissue equivalent proportional counter

• Direct Memory Access (DMA) from the ADCs to an embedded Linux OS.

- Direct Memory Access (DMA) from the ADCs to an embedded Linux OS.
- Each trigger event is saved and can be sent via TCP-IP

- Direct Memory Access (DMA) from the ADCs to an embedded Linux OS.
- Each trigger event is saved and can be sent via TCP-IP
- External trigger pulse for dead time
 estimation and possible synchronization
 with other devices

- Direct Memory Access (DMA) from the ADCs to an embedded Linux OS.
- Each trigger event is saved and can be sent via TCP-IP
- External trigger pulse for dead time estimation and possible synchronization with other devices

- Direct Memory Access (DMA) from the ADCs to an embedded Linux OS.
 - Each trigger event is saved and can be sent via TCP-IP
- External trigger pulse for dead time estimation and possible synchronization with other devices
- Spectra overlaps. Good.
Low Gain Avalanche Detector

LGADs

71 channels

Low Gain Avalanche Detector

71 channels

Low Gain Avalanche Detector

71 channels

Low Gain Avalanche Detector

71 channels

Each chip read a maximum of 24 LGADs

Low Gain Avalanche Detector

71 channels

Each chip read a maximum of 24 LGADs

- Adjust thresholds levels
- Signal processing

Low Gain Avalanche Detector

<image>

71 channels

Each chip read a maximum of 24 LGADs

- Adjust thresholds levels
- Signal processing

Readout based on ESA_ABACUS and ABACUS chip developed by INFN-TO for for

Low Gain Avalanche Detector

<section-header>

71 channels

Each chip read a maximum of 24 LGADs

- Adjust thresholds levels
- Signal processing

Readout based on ESA_ABACUS and ABACUS chip developed by INFN-TO for for

- Physical support
- Power and connections

Low Gain Avalanche Detector

<image>

71 channels

Each chip read a maximum of 24 LGADs

- Adjust thresholds levels
- Signal processing

Readout based on ESA_ABACUS and ABACUS chip developed by INFN-TO for for

Digital signal from ESA_ABACUS is processed thanks to FPGA Xilinx model zc702

- Physical support
- Power and connections

Low Gain Avalanche Detector

<section-header>

71 channels

Each chip read a maximum of 24 LGADs

- Adjust thresholds levels
- Signal processing

Readout based on ESA_ABACUS and ABACUS chip developed by INFN-TO for for

- Physical support
- Power and connections

Digital signal from ESA_ABACUS is processed thanks to FPGA Xilinx model zc702

- Thresholds controls
- Signals from ASICs

Low Gain Avalanche Detector

Low Gain Avalanche Detector

Xilinx model zc702 Zynq

• Counts the digital signal from the ABACUS ASICs

Low Gain Avalanche Detector

- Counts the digital signal from the ABACUS ASICs
- Direct Memory Access (DMA) used to send the data in the Processing System (PS)

Low Gain Avalanche Detector

- Counts the digital signal from the ABACUS ASICs
- Direct Memory Access (DMA) used to send the data in the Processing System (PS)
- The PS runs an embedded Linux distribution

Low Gain Avalanche Detector

- Counts the digital signal from the ABACUS ASICs
- Direct Memory Access (DMA) used to send the data in the Processing System (PS)
- The PS runs an embedded Linux distribution
- The user can control the thresholds levels easily from the Linux system

Low Gain Avalanche Detector

- Counts the digital signal from the ABACUS ASICs
- Direct Memory Access (DMA) used to send the data in the Processing System (PS)
- The PS runs an embedded Linux distribution
- The user can control the thresholds levels easily from the Linux system
- Data is sent via TPC-IP to an external PC

Low Gain Avalanche Detector

Beam test conducted at the Proton Therapy Center in Trento to answer:

Low Gain Avalanche Detector

Beam test conducted at the Proton Therapy Center in Trento to answer:

 are the LGADs sensors capable of detecting protons with energy up to 228 MeV?

Low Gain Avalanche Detector

Probability of having a signal with amplitude $> x_{Threshold}$

$$f(x \ge x_{\text{Threshold}}) = f_0 \int_{x_{\text{Threshold}}}^{\infty} p(x')d(x')$$

$$p(x) = -\frac{df(x)}{dx}$$

$$p(x) = -\frac{df(x)}{dx}$$

$$p(x) = -\frac{df(x)}{dx}$$

LGAD - Threshold scan results, 228 MeV
LGAD - Threshold scan results, 228 MeV

Low Gain Avalanche Detector

LGAD - Threshold scan results, 228 MeV

Low Gain Avalanche Detector

4 X ESA_ABACUS with 3 ABACUS chips each

LGADs sensors thinning

- LGADs sensors thinning
- Synchronization between TEPC and LGAD

- LGADs sensors thinning
- Synchronization between TEPC and LGAD
- Implementation of the triggering condition

- LGADs sensors thinning
- Synchronization between TEPC and LGAD
- Implementation of the triggering condition
- Extend the implementation the 4 layers of LGADs

- LGADs sensors thinning
- Synchronization between TEPC and LGAD
- Implementation of the triggering condition
- Extend the implementation the 4 layers of LGADs
- Data analysis

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

- HDM requires
 - ✓ 284 channels for tracking
 - ✓ 3 ADCs for energy deposition information

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - ✓ Provide a superior radiation field characterization.

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

- HDM requires
 - ✓ 284 channels for tracking
 - ✓ 3 ADCs for energy deposition information

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - Provide a superior radiation field characterization

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

- HDM requires
 - ✓ 284 channels for tracking
 - ✓ 3 ADCs for energy deposition information

Machine learning-based particle track reconstruction published in Physics in Medicine & Biology 10.1088/1361-6560/ac8af3 Complementary information

Thak you for your attentions

- HDM if capable of:
 - ✓ Measure particle real track length in TEPC
 - ✓ Improve TEPC spatial resolution
 - Provide a superior radiation field characterization

Feasibility study published in Frontiers in Physics, 10.3389/fphy.2020.578444

HDM improved radiation quality description results in a more accurate dose calculation in TPS.

- HDM requires
 - ✓ 284 channels for tracking
 - ✓ 3 ADCs for energy deposition information

Machine learning-based particle track reconstruction published in Physics in Medicine & Biology 10.1088/1361-6560/ac8af3 Complementary information

Backup slides

ABACUS ASIC

Each chip read a maximum of 24 LGADs

Sets threshold for each channel

 Problem finding a common threshold to multiple channels due to limited range

Preamplifier Buffer

Output is in Current Mode Logic (CML)

Multistage Feedback discriminator capacitor signal reset

+ New fixed version of the chip production should start within days

HDM: the spectrum from simulations

- HDM will improve the radiation quality description and consequentially the treatment planning
- HDM will improve the TEPC spatial resolution

LGADs geometry

0.066

Dead area

34 strips per sensor

71 strips per sensor 0.294 0.066 0.294 0.066 0.114 0.066 0.05 0.15 \mathbf{T} 0.1

pitch 360 µm \bigcirc

Active area

- better fill factor 0
- less channels to read 0

- pitch 180 µm 0
- better spatial 0 resolution

0.114

0.05

0.1

TEPC Energy deposition equivalence:

Landau distribution

$$f(x \ge x_{\text{Threshold}}) = f_0 \int_{x_{\text{Threshold}}}^{\infty} p(x')d(x')$$

$$f_0 \int_{x_{\text{Threshold}}}^{\infty} p(x')d(x') = f_0 \left(\int_{-\infty}^{\infty} - \int_{-\infty}^{x_{\text{Threshold}}} \right) p(x')d(x') = f_0 \left(1 - \int_{-\infty}^{x_{\text{Threshold}}} p(x')dx' \right)$$

$$p(x) = -\frac{df(x)}{dx}$$