TWEPP-23

Topical Workshop on Electronics for Particle Physics Geremeas, Sardinia, Italy, 2 – 6 October 2023

A readout system based on SiPMfor the dRICH detector at the EIC

TWEPP 2023 - Oct 1–6, 2023 Geremeas, Sardinia, Italy INFN BOLOGNA Luigi Rignanese rignanes@bo.infn.it

Outline

- The context: The Electron-Ion Collider and the EPIC detector
- SiPM and radiation damage
- First SiPM readout system
- Characterization and Test beam results
- Towards the final system

The Electron-Ion Collider

The major US project in the field of nuclear physics

• one of the most important scientific facilities for the future of nuclear and subnuclear physics

the world's first collider for

- polarized electron-proton (and light ions) •
- electron-nucleus collisions

•will allow to explore the secrets of QCD

- understand origin of mass & spin of the nucleons
- extraordinary 3D images of the nuclear structure

The ePIC detector

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

The ePIC detector

• New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (µRWELL, MMG) cylindrical and planar

PID

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

The dual-radiator (dRICH) for forward PID

Compact and cost-effective solution for broad momentum (3-50 GeV/c) coverage at forward rapidity π/K 3 σ separation at 50 GeV/c

RADIATORS: aerogel (n ~ 1.02) and C_2F_6 (n ~ 1.0008) **MIRRORS:** 6 open sectors of large outward-reflecting **Photosensors:** $3x3 \text{ mm}^2$ pixels 0.5 m² per sector in 1 T magnetic field and radioactive environnement (10¹¹ n_{eq}/cm^2 total exposure 12 y operation) for low light levels.

SiPM is the best photosensor candidate:
Single Photon sensitivity ~ 10 phs per Cherenkov event
Good timing performance < 100 ps
Cheap and insensitive to magnetic fields
BUT

High DCR and high radiation sensitivity

Gas volume 120 cm

Aerogel 4 cm

The dual-radiator (dRICH) for forward PID

Compact and cost-effective solution for broad momentum (3-50 GeV/c) coverage at forward rapidity π/K 3σ separation at 50 GeV/c Spherical mirrors

RADIATORS: ac	What can be done?
MIRRORS: 6 op	Cooling the sensors down to – 30° C reduces the DCR by a factor ~ 100
Photosensors:	TATE
magnetic field a	Radiation damage by Non-ionizing Energy Loss (NIEL) leads
n _{eq} /cm² total ex	to displacement damages and build up of crystal defects
SiPM is the best	by using annealing techniques (high temperature).
Single Photon s	
Good timing pe	Sub ns time resolutions allow coincidence cuts that greatly reduces DCR contribution in the measurements
Cheap and inse	
BUT	

High DCR and high radiation sensitivity

Extensive studies on different kind of SiPM from different vendors (more than 200 devices tested)

	board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes	
	HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	РНОТ
		S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD	
	HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{bd}	UR BUS
		S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness	
	SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	ON
		MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version	ON Semiconductor
	BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	BROADCOM

Irradiation-annealing campaigns findings

4 irradiation campaigns with protons and neutrons at TIFPA (TN) and LNL (PD)

Current annealing

Another way to heat up the sensors is by directly polarization. Current flowing into the SiPM, generates heat resulting in annealing.

175° C can be obtained providing 10 V and ~100 mA (~1 W) per sensor @ room temperature

<mark>Measurements taken @ -30° C</mark>

Damage recovery of SiPMs with multiple annealing cycles

Damage recovery of SiPMs with multiple annealing cycles

First prototype concept: flexibility

Temp. sensor (LM73)

EDGE connector

SIPMs matrix

- Different sensors
- No plastic

Adapter (INFN FE)

- VBias fine tuning
- AC connection to the FE

First prototype

SIPMs matrix

- Different sensors
- No plastic

Adapter (INFN FE)

- AC connection to the FE
- VBias fine tuning

Front-End board (INFN TO)

- Alcor ASIC
- Voltage regulators
- Samtec Firefly 8x pairs to FPGA

First prototype

00 00

- **Different sensors**
- No plastic .

- AC connection to the FE
- **VBias fine tuning** •

INFN TO)

00

- Voltage regulators •
- Samtec Firefly 8x LVDS pairs •

ALCOR ASIC by INFN-To

32-pixel matrix mixed signal ASIC initially foreseen for SiPMs in cryogenics

The chip performs **amplification**, **signal conditioning** and **event digitization** with a fully **digital I/O**

Each **pixel** features

- Regulated common gate **amplifier** (10 ohm impedance)
- Post amp TIA for 4 gain settings
- 2 leading-edge discriminators with independent threshold settings
- 4 TDCs based on analogue interpolation with 50 ps LSB (@ 320 MHz)
- 3 triggerless operation modes:
 - LET leading edge threshold measurement, high-rate time-stamp
 - ToT Time-over-Threshold
 - Slew rate measurements for signal characterization

Fully **digital output** on **4 LVDS TX** data links **SPI-based** chip configuration **64-bit** event and **status** data

Timing performance

The setup

Climatic chamber **@ -30° C** hosting the readout system with **SiPMs** and one without used as reference.

< 4 ps laser pulse filtered down to single photon by ND filters.

Laser-SiPM signal synchronization by sending test pulse to reference ALCOR to measure laser pulse start (50 ps LSB TDC) in synch with ALCOR readout. Δt is measured as the time difference between reference and ALCOR reading SiPM

walk corrected)

First prototype readout

4 matrixes with different SiPMs irradiated at 10¹⁰ n_{eq}/cm² annealed in the oven (200 h @150° C)

- 30° C operation with peltier cells

Nitrogen gas circulation in the box to avoid moisture and frost

Neoprene on the edges to isolate the sensors from light

sensor DCR ~ 15 kHz

2023 readout system prototype

Towards the final design looking for **Compactness** and **Integration**

4 matrixes of 8x8 Hamamtsu S13650 SiPMs (256) hosted by a Rigid flex matrix board with no plastic connectors (can be annealed in the oven)
Integrated cooling with peltier cells and liquid cooling
4 stackable adapters+frontened boards placed perpendicularly to save space.

2023 readout system prototype

2023 readout system prototype

Matrix board

HV and signals via **flex** pcb with 1 mm bending radius Rigid flex design to host HV LC-filters Back-side temperature sensors

4x Adapter boards

HV regulation 0-5 V per SiPM 0-80 V for 8 channels AC coupling to ALCOR Mosfet to isolate the anode for the "annealing mode"

4x Front-end boards

2x ALCOR-v2 ASICs (2x 32 channels) 2x Firefly connectors Voltage regulators

Mounted in the last weeks

HV and signals via flex pcb with 1 mm bending radius Rigid flex design to host HV LC-filters Back-side temperature sensors HV regulation 0-5 V per SiPM 0-80 V for 8 ch AC coupling to Mosfet to isolat anode for the " mode"

Full system integrated in Bologna for tests. **Now travelling to CERN!!**

Conclusions

- SiPMs are a feasible solution for the dRICH photodetection planes at EIC
- 2 prototype of the readout system were developed and (up to be) tested in in beam operations

