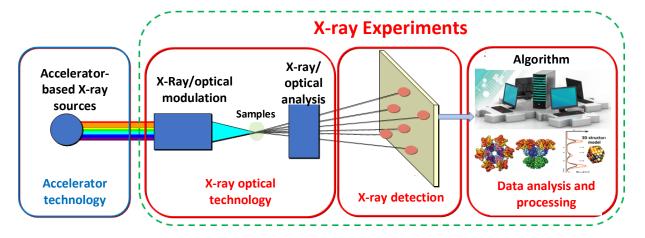


HEPS-BPIX40: The Upgrade of the Hybrid Pixel Detector for the High Energy Photon Source

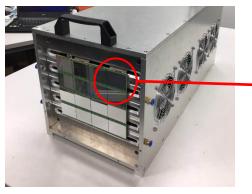
Jie Zhang on behalf of the detector design team Institute of High Energy Physics, CAS TWEPP 2023, Geremeas, Sardinia, 2023-10-05

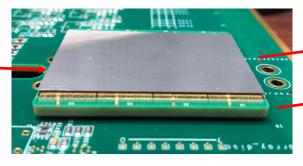
Outline

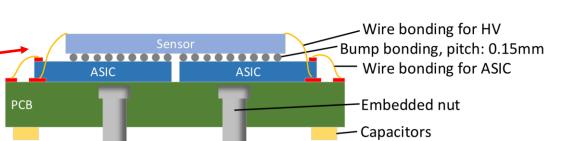
- Background & Requirements
- Hybrid Module
 - ASIC Upgrade
 - Front-end Module Upgrade
 - Single Module Test
- Electronics System
 - FPGA Readout Board Upgrade
 - Clocking
- Summary


High Energy Photon Source (HEPS)

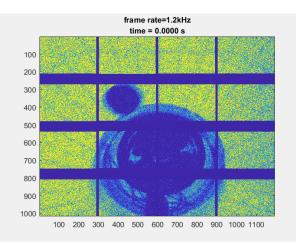
- Fourth-generation synchrotron light source
- Under construction at Huairou District, Beijing
 - Start the user operation in 2026
- Key-parameters for beam


Parameters	Nominal		
Beam energy	6.0 GeV		
Emittance	better than 0.06nm×rad		
Beam	Higher than 1×1022 phs/s/mm2/mrad2/0.1%BW		
Spatial resolution	10 nm		
Energy resolution	1 meV		
Photon energy	Up to 300keV		

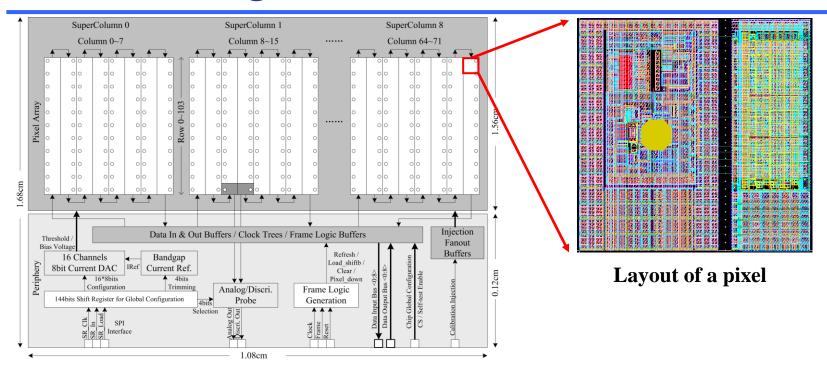



- HEPS Phase I plans 14 beamlines with the area array pixel detector in 2025
 - Detectable energy range: 8-20 keV
- Spatial resolution: 140 µm
- Total pixels: 6M, 2M, 1M, & 150K
- Frame rate: Up to 2 kHz
- Ref: http://english.ihep.cas.cn/heps/index.html

Hybrid Pixel Detector

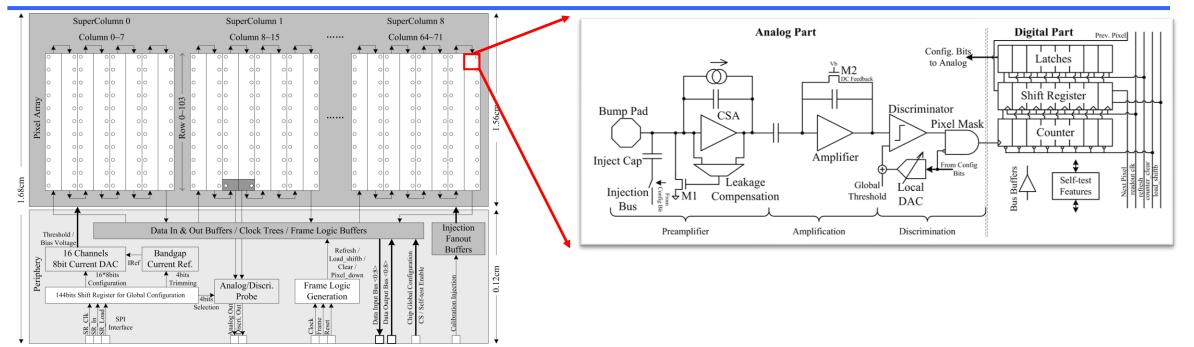

Front-end modules

Cross-section of the front-end modules


- Assembled from multiple front-end modules
- Front-end modules
 - Sensor
 - An array of individual pixels arranged in a grid pattern
 - Convert the incident radiation into electrical signals
 - Readout ASIC
 - An array of individual pixels match with sensor
 - Amplify electrical signals and process to generate a digital image or data
 - Module hybridization
 - One sensor bump-bonded with multiple readout AISCs

Dynamic image

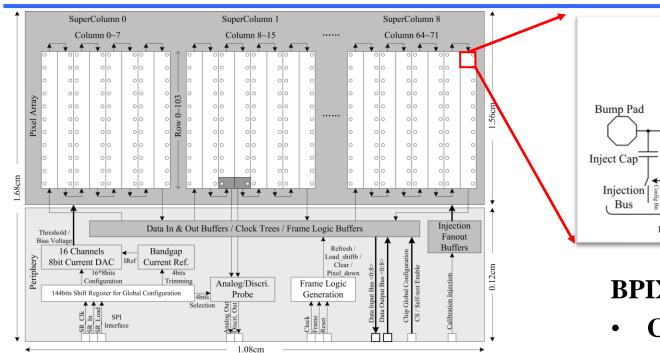
Photon Counting Readout ASIC: BPIX

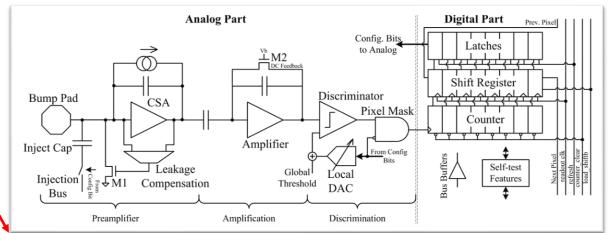


Chip architecture

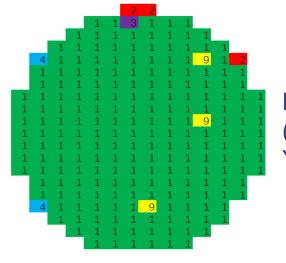
- Pixel cells organized in array, connected in series, read out by shift chains
- Peripheral part
 - Config, control, data packaging & monitoring

Photon Counting Readout ASIC: BPIX




- Pixel cell:
 - Electrical signal amplified with a low noise amplifier, shaped through a shaper and then discriminated with an adjustable threshold
- Threshold setting:
 - Global DAC for the coarse threshold
 - In each pixel cell, local DAC for the fine threshold
- Once the amplified signal exceeds the threshold, the counter adds 1.

Photon Counting Readout ASIC: BPIX

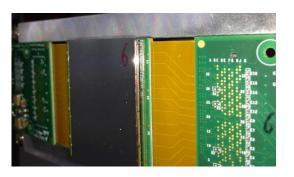


Specs	BPIX-20	BPIX-40
Pixel size	150 μm X 150 μm	140 μm X 140 μm
Pixel Array	104 X 72	128 X 96
Thresholds	1	2
Gain	Fixed	2 bits tunable
Counting rate	> 2 Mcps	> 2 Mcps @ Med gain
Frame rate	1.2 kHz continuous	2 kHz continuous
Counting Depth	20 bit	14 bit

BPIX photon counting chips

• CMOS 130nm, 1P8M

Probe Card Test – ATE (Automatic Test Equipment): Yield of a 12-inch wafer > 95%


Module Assembly Evolution

Module assembly was evolved in four generation of prototype systems:

- Indium bump used for the 1st, nice yield but low productivity
 - Low temperature in the full product flow was an issue
- CuSn bump for the 2nd, high productivity for mass production, and high temperature compatible
- TSV (Through Silicon Via) features added in the 3rd to eliminate the wire bonding for ASIC (not for sensor), for smaller module assembly gaps
 - But found long-term stability problem
- Back to CuSn bump for 4th, but with ASIC pin map optimization and advanced wire-bonding, the non-detectable area is even better than the TSV version

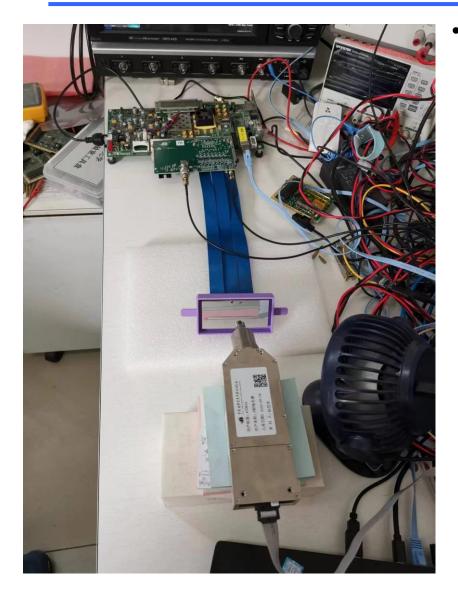
Indium bump bonding module for the 1st prototype

CuSn bump bonding module for the 2th prototype

J. Zhang et al 2019 NIMA 958 162488

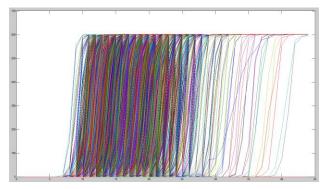
Bump bonding + TSV module for the 3rd prototype

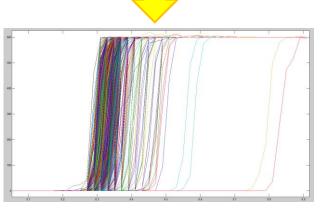
J. Zhang et al 2020 NIMA 980 164425



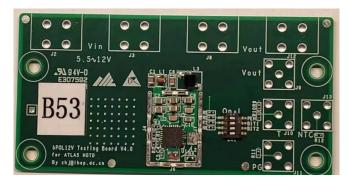
Advanced wire-bonding

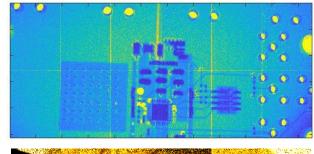
CuSn bump bonding module for the 4th prototype after ASIC pin map optimization


Single Module Test



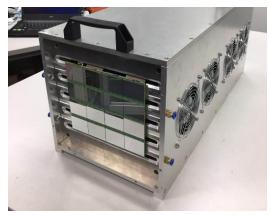
Single module passed the preliminary tests

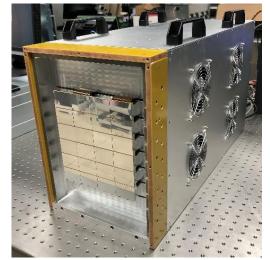

- All functions are as expected
- Reliability tests in progress


Threshold scan before calibration

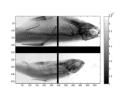
Threshold scan after calibration

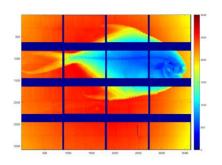
PCB for bPOL12v in ATLAS HGTD

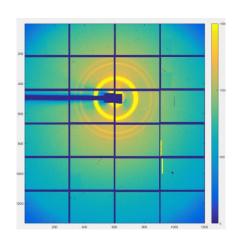

Preliminary X-ray image (uncalibrated)
A leaf exposed by an Au X-ray tube with 15 kV and 200 µA current for 0.3s

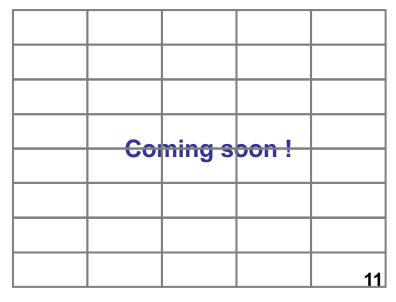

Prototype Systems Evolution

	1st BPIX (2015-2016)	2 nd BPIX (2017-2018)	3 rd BPIX (2019-2021)	4 th BPIX (2022-now)
Modules	6	16	24	40
Pixels	360K	~1M	1.4M	6M
Assembly Scheme	Wire bonding & Rigid-flex PCB	Wire bonding & Rigid-flex PCB	Through Silicon Via (TSV) & Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding & HTCC (High Temperature Co-Fired Ceramic)
Dead Area Occupancy	26.3%	26.3%	11.8%	~9.3%
FPGA Board	Spartan6 + SFP	Kintex7 + DDR3 + Molex Nano-Pitch I/O™ Cable	Kintex7 + DDR3 + Molex Nano-Pitch I/O™ Cable	UltraScale Kintex Plus + DDR4 + MicroTCA.4
DAQ Interface	1G Ethernet x12	1/10 G Ethernet x4	10G Ethernet x 4	100G Ethernet
Power	100W	370W	500W	<2500W

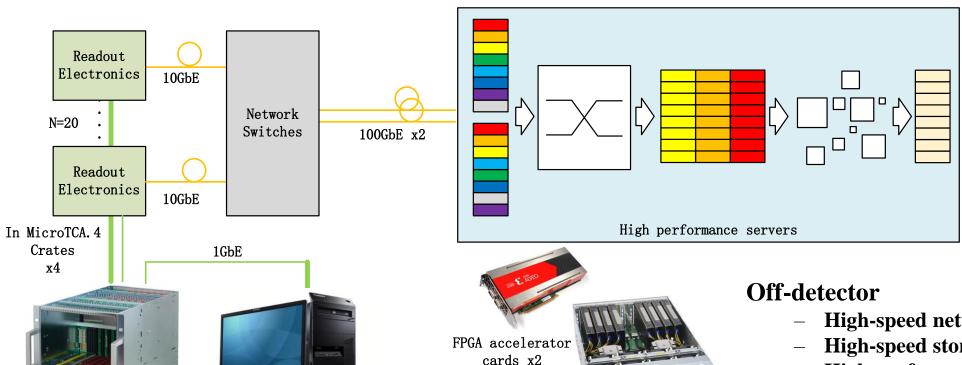



Under development


Prototype Systems Evolution



	1 st BPIX (2015-2016)	2 nd BPIX (2017-2018)	3 rd BPIX (2019-2021)	4 th BPIX (2022-now)
Modules	6	16	24	40
Pixels	360K	~1M	1.4M	6M
Assembly Scheme	Wire bonding & Rigid-flex PCB	Wire bonding & Rigid-flex PCB	Through Silicon Via (TSV) & Rigid-flex PCB with low CTE (coefficient of thermal expansion)	Advanced wire bonding & HTCC (High Temperature Co-Fired Ceramic)
Dead Area Occupancy	26.3%	26.3%	11.8%	9.3%
FPGA Board	Spartan6 + SFP	Kintex7 + DDR3 + Molex Nano-Pitch I/O™ Cable	Kintex7 + DDR3 + Molex Nano-Pitch I/O™ Cable	UltraScale Kintex Plus + DDR4 + MicroTCA.4
DAQ Interface	1G Ethernet x12	1/10 G Ethernet x4	10G Ethernet x 4	100G Ethernet
Power	100W	370W	500W	<2500W



Electronics System Architecture

Control & monitor

On-detector

- **FPGA**
 - **Front-end Electronics Control**
 - **Clock Synchronization**
 - **Monitoring**
 - **Data Acquisition**

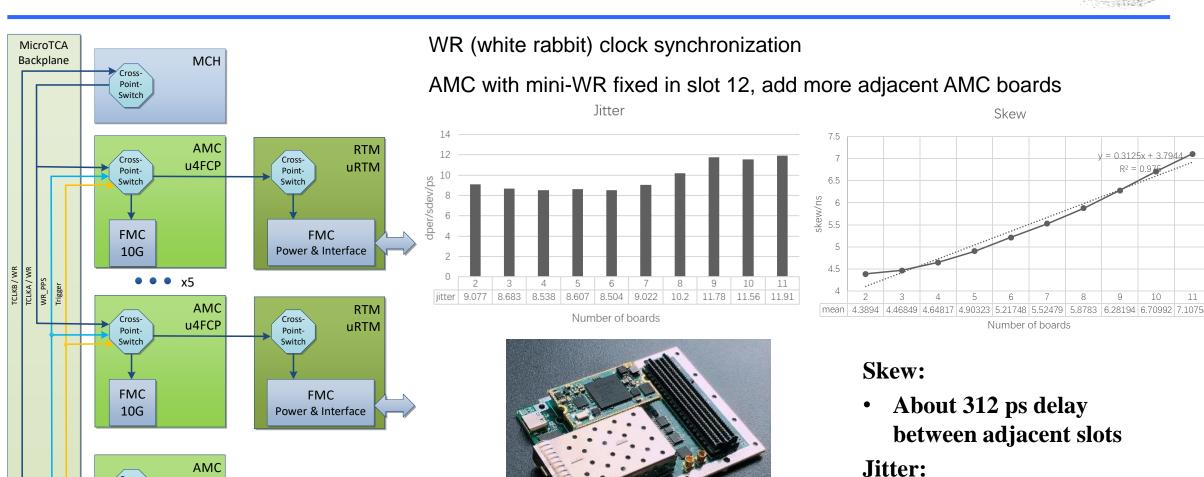
- **High-speed network**
- **High-speed storage**
- **High-performance** computing

FPGA

- **Data aggregation**
- **Data sorting**
- **Data compression**
- **Real-time algorithm**

Clock distribution in MicroTCA

Single-Mode optical fiber to WR-Switch

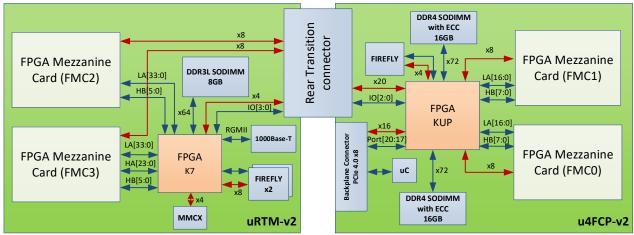

Cross-Point-

WR 125MHz

FMC

WR Redundant

• <12 ps


Meet the BPIX requirements

Mini-WR FMC for System-level clock synchronization

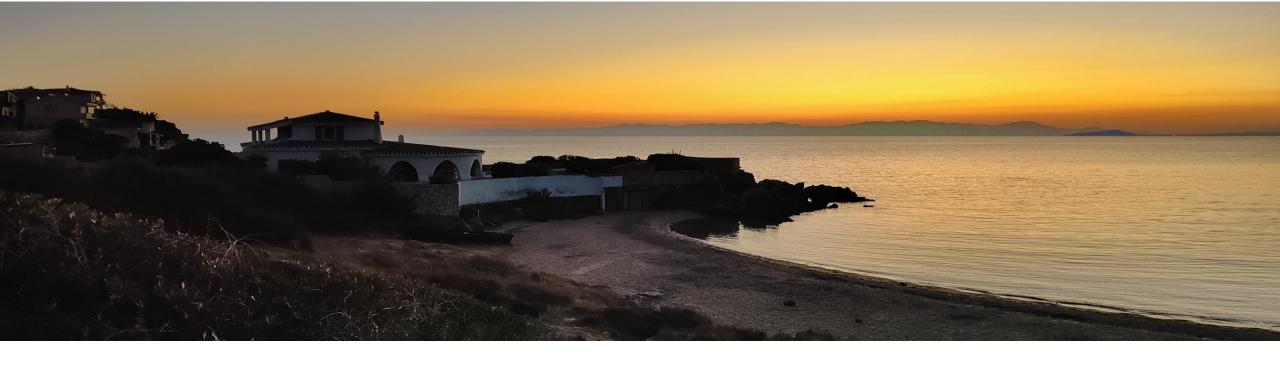
FPGA board

uRTM-v2

u4FCP-v1

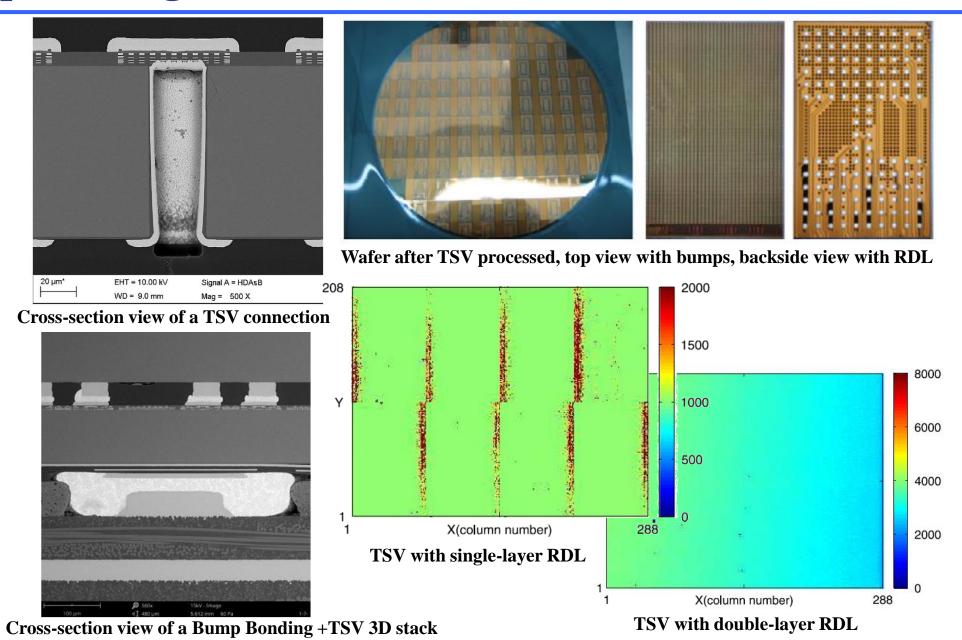
u4FCP & uRTM:

FPGA-based MicroTCA compatible AMC board


- For generic system control and data acquisition in HEP/HEPS experiments
- Conceived to serve a mid-sized system residing either
 - inside a MicroTCA crate or
 - stand-alone on desktop with high-speed optical links or Ethernet to PC
- HPC FMC sockets
 - Provide additional clock signals, user-specific I/O and high-speed transceivers that can be used to extend the connectivity as well as the I/O bandwidth
- The red lines are high-speed serial links connected to the gigabyte transceivers (GTY/GTH/GTX) of the FPGA. The blue lines are the general input/ outputs connected to the High Performance (HP), High Range (HR) or High Density (HD) banks of the FPGA.
- More details:
 - https://github.com/palzhj/u4FCPv2

Summary

HEPS-BPIX40


- An new hybrid pixel detector for the High Energy Photon Source
- Dual-threshold photon counting ASIC
 - Complete the engineering run and probe card test, yield > 95%
- Front-end module
 - Complete small batch assembly, pass the preliminary tests, under reliability tests
- 6M prototype system
 - Complete hardware design and production, firmware and software development in progress
 - Expected to be ready for beam testing by the end of this year

THANKS TO YOUR ATTENTION

Bump bonding & TSV features

uFC Series Board

- Xilinx Kintex-7 28nm 7K325T
 - 0.32 Million System Logic
 - 840 DSP
- PCle2.0 x4
- 8GB DDR3 800MHz SDRAM ECC
- (8+2)*10G High-Speed Serial Links

u4FC&P v1

- Kintex Ultrascale+ 16nm KU11P
 - 0.65 Million System Logic
 - 2928 DSP
- 4*PCle4.0 x4 + PCle4.0 x8
- 2*16GB DDR4 1200MHz SDRAM ECC
- 4*40G/100G High-Speed Serial Links

u4FC&P v2

- Kintex Ultrascale+ 16nm KU15P
- 1.14 Million System Logic
- 1968 DSP
- SAMTEC Firefly x3 + PCle4.0 x8
- 2* 16GB DDR4 1200MHz SDRAM ECC
- 8*40G/100G High-Speed Serial Links

Name	Instance Specs					
	Status	FPGA	Memory	NVMe	PCIe BW	Network
uFC v2	Ready	7K325T	8GB	-	2 GB/s	10GbE
uFC&P v1	Ready	KU11P	2*16GB	4*(up to 4TB)	8 GB/s	40/100GbE
uFC&P v2	R&D	KU15P	2*16GB	-	8 GB/s	40/100GbE

Ref1: Zhang, J., et al. (2023). TNS **70(6): 935-940.** Ref2: Zhang, J., et al. (2019). TNS **66(7): 1169-1173.**

FMC cards

FPGA node

AMC+RTM boards

FPGA

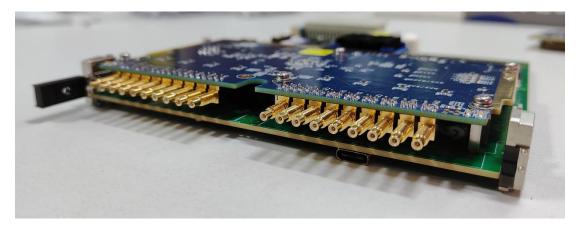
- With various FMC cards
- node

FPGA node

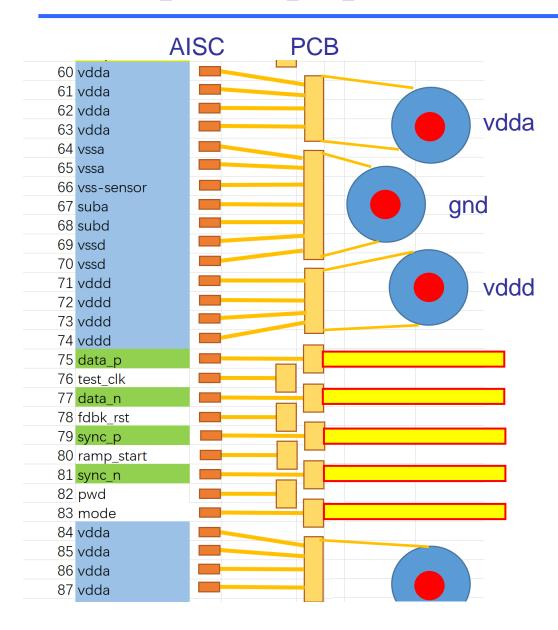
Mini-WR FMC

SFP+ x4

QSFP28 x2

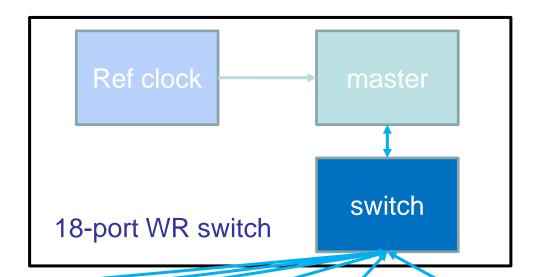

QSFP28 x2

QSFP28 x2

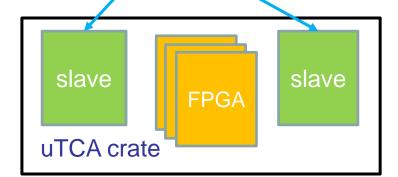

ADC FMC board

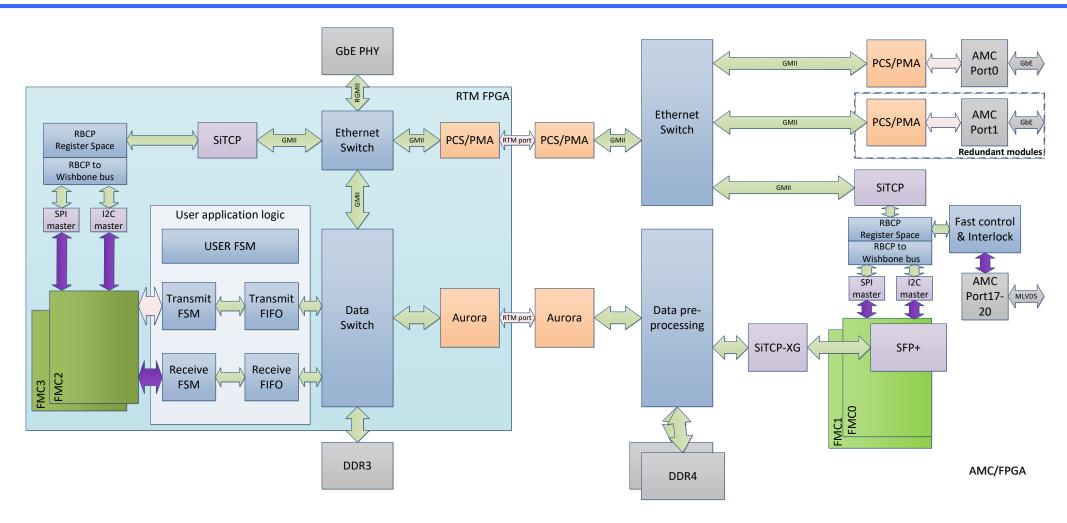
- 16 single-end channels
- 125 MHz analog bandwidth
- DC coupled analog input
- 12/16-bit Σ -Δ ADC
- Raw sample rate up to 2 GSps

ASIC pin map optimization


- ASIC pin pitch: 100 um
- PCB pin pitch: 200 um
- ASIC pin map optimization
 - need to consider the fan-out limitation of the PCB
 - > PCB via diameter: 200 um (8 mil)
 - **>** Via gap: 400 um (16 mil)
 - Test pins and readout pins are interleaved
 - ➤ The test pin will not be used in the final product.

Clock redundancy consideration


- Due to the life limit of fiber optic transceivers, we plan to use a redundant WR clock
 - Each uTCA crate has two WR slave nodes
 - Clock source selection
 - WR node report the loss of lock
 - DCS get the report, and configure the hardware to switch to the redundant node



FPGA Firmware

- Config & monitor via UDP/IP
- Readout via TCP/IP