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FastML - Who are we?

• Cross-discipline group of sPHENIX and LHC physicist, engineers, and computer 

scientists working on firmware-based ML applications data selections

− sPHENIX is benefiting from a 2020 Department of Energy (DOE), USA funding call

• The mission

− Efficiently extract critical and strategic information from large complex data sets

− Address the challenges of autonomous control and experimentation

− Artificial Intelligence for data reduction of large experimental data

@ renewed for 2 more years in 2023
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sPHENIX experiment
• Located at RHIC accelerator at BNL (USA)

• ~56 MHz accelerator clock with ~9.3 MHz BC

• Running period 2023-2025

• ~4m long, ~5m high, 1000 tons

• Tracking detectors (MVTX, INTT, TPC, TPOT) 

and calorimeters (EMCAL, HCAL)

• 1.4 T Magnetic Field, |𝜂| ⩽1.1

• Tracking detectors capable of streaming 

readout, but unable to save all TPC data.

• 15 kHz designed Trigger Rate 

Microvertex 
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Intermediate 
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Time Projection 
Chamber (TPC)

TPC Outer 
Tracker (TPOT)

Electromagnetic 
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MVTX and INTT

INTT

TPC

MVTX

MVTX - Active area ~1685 cm2

• Based on ALICE ITS2 ALPIDE chips, with ATLAS FELIX backend

− Monolithic Active Pixel Sensors

− Very fine pitch (27 μm x 29 μm)

− Event Time resolution ~ 5 μs

− 3 layers, 48 staves total, 9 chips per stave ~ 230M total channels

INTT

• Silicon Strip Detector

− Hamamatsu silicon modules

− Pitch 78 μm x 16 (or 20) mm

− Excellent Time resolution ~100 ns

     (100 ns is the RHIC BC time)

− 2 layers, 56 ladders total, 360k channels
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sPHENIX Readout and AI-ML HF Trigger Integration  

On Detector Rack Room
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To Computing Centre 
100+ Gigabit

Crossbar

Switch

FELIX (MVTX+INTT) -> AI/ML -> Trigger

Front-End Module/Electronics
Data Collection Module
• Zero suppress, packing

SubEvent Buffer (x20)
• Data collector

EBDC: Event Buffer and Data Compressor (x40)
• 6x MVTX, 8x INTT, 24x TPC

~ 1 PB each
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• The Global Level 1 Trigger (GL1) and the machine clock is distributed via 

Granule Timing Module (GTM)

− GL1 trigger is used by calorimeters and the TPC

− GL1 transmits clock and trigger to the vGTM, which then transmits it to the FEE

▪ vGTM is the adapter to a given detector

▪ GL1 is maintaining the BUSY received from vGTM

The timing and trigger distribution

FEEFEEFEE
FELIX
FELIX
FELIX

Trigger Inputs
• Up to 4 LEMO and  

4 fibers
• oHCAL, MBD, EMC, 

iHCAL, sEPD, ZDC

Granule

Granule
LL1

GL1

Machine clock

BUSY

GL1
Granule

vGTM FEMFEMFEM
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Motivation – Heavy Flavour

• Integrate the AI-based heavy flavour trigger system demonstrator into the sPHENIX 

experiment for p+p run in 2024 to R&D its feasibility, requirements, and constrains

− Heavy-flavour (HF) events are very rare ~1% of Minimum Bias (MB) events at RHIC 
energy

− RHIC collision rate is around 2-3 MHz, sPHENIX readout 15 kHz (DAQ - 300 Gb/s)

▪ Trackers are Streaming Readout (SRO) capable, but can’t save all TPC data

− 10% trigger-enhanced SRO increases HF MB rate ~ 300 kHz

− ML HW tagging aims to sample remaining 90% of the luminosity using the tracklet 
reconstruction from the silicon trackers

• The aim is to deploy future system on Electron-Ion Collider (EIC)

− AI-based electron tagging with streaming readout to identify the (non)interesting Deep-
Inelastic-Scattering (DIS) processes in the e+p/A collisions.

▪ based on the measured scattering electron energy and direction 
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The ML algorithm – TrackGNN

• Based on Graph Neural Network (GNN)

− Detector and physics knowledge improves prediction

− Based on PyTorch and PyTorch Geometric

• Initial training on simulated data from MVTX and INTT 

− On GPU - NVIDIA Titan RTX, A500, and A6000

• Topological selection of HF signals on FPGA

− Tracking and clustering must be done on FPGA

• Beam-spot and anomaly detection on GPU based feed-back system

• We propose a novel method to treat the events as track graphs instead of hit 

graphs. This method is driven by the physics (transverse momentum)

− Estimate momentum based on silicon hits -> 15% improvement on trigger decision 

ECML PKDD 2022, Sub 1256

https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1256.pdf
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The ML algorithm – TrackGNN

• Three stages of event processing 

1. Hits clustering 

2. Track reconstruction + outlier hits removal
▪ by connecting the hits across different detector layers into hit pairs. 

▪ apply geometric constraints and down select the hit

3. Trigger detection

• Graph Neural Network to solve 

− the track reconstruction problem

− the inter-track adjacency matrix prediction

− the graph level trigger detection 

Graph Track 

Reconstruction

Displaced Vertex 

Reconstruction

Track Momentum 

Regression

Trigger Decision (HF 

identification)

Silicon Pixel Hits

Labelled Track Hits Displaced Vertices

Reconstructed Track Momentum

Trigger

AI Algorithm block

GNN

Bipartite

ECML PKDD 2022, Sub 1256

https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1256.pdf
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The ML algorithm – TrackGNN

• Challenges

− To provide an end-to-end solution that uses raw detector readout hit information to 
make trigger decisions for data collection. 

− To design a neural network compatible with the given detector readout and capable of 
learning a broad spectrum of physics properties

• using low-level hits to build the high-level trigger decision.

• Growing sub-field of geometric deep learning

1% signal/background ratio 0.1% signal/background ratio

Background Rejection Efficiency Purity Background Rejection Efficiency Purity

90% 72.5% 7.25% 90% 78% 0.78%

95% 48.9% 9.78% 95% 50% 1.0%

99% 15.0% 15.0% 99% 17% 1.7%

99.33% 10.5% 15.74% 99.33% 11.0% 1.65%

D0→K- π+ sample

ECML PKDD 2022, Sub 1256

https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1256.pdf
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Generation of the GNN IP core – two parallel efforts

1. Team lead by the Georgia Institute of Technology (GIT)

− Direct translation of the sPHENIX TrackGNN model to IP using HLS

− Model

▪ 5 layers, each layer: 64 dim 4 layers for node and 64 dim 4 layers for edge embedding

− Goal: 100-200 nodes, 200-500 edges

− Implementation

▪ 100 nodes, 140 edges

▪ Measured Start-to-end latency

− 150 us @ 130 MHz, 130 us @ 180 MHz

▪ Still needs 10-20x speedup!

− Fast-paced development 380 us (25th August) -> 150 us (4th September) @ 130 MHz

▪ Attempts to increase clock to 300 MHz failed on timing constrains

▪ Detailed latency breakdown and parallelism exploration ongoing

▪ Might require model changes

Utilization (Alveo U280)

LUT 308K (23.7%)

FF 378K (14.5%)

BRAM 1025 (50.8%)

DSP 1426 (15.8%)

Close discussion between model developers and FPGA engineers

Latency
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Generation of the GNN IP core – two parallel efforts

2. Team lead by the Massachusetts Institute of Technology (MIT) and Fermilab (FNAL)

− Based on High Level Synthesis for Machine Learning (hls4ml), a generalized python 
framework for machine learning inference in FPGAs

• Third main upgrade underway, focusing on 3 examples

− Example 1: Tri-muon reconstruction with the LHC (muon endcaps)

− Example 2: Heavy flavor tracking at sPHENIX

− Example 3: Silicon strip tracking at LHC 

arXiv:2112.02048

Initial translation just started, expected first 
version of the TrackGNN model on FPGA end of 
October 2023

arXiv:2103.05579
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Buffer
Box

The DAQ–AI Data Flow

• Motivation to use FELIX board:

− To reuse the PCIe implementation (16-lane Gen-3) and software tools provided by the 
FELIX developers 

− on-board FPGA is a Kintex Ultrascale XCKU115FLVF1924-2E

AI engine

• The decision signal of heavy flavor event 

from the AI-Engine will be sent out via the 

LEMO connectors to the sPHENIX GTM/GL1 

system to initiate the TPC readout in the 

triggered mode

• GPU based feed-back system for the 

beamspot monitoring
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The firmware design - data flow

DAQ board

AI Engine

Felix-712

Felix-712

MVTX

INTT
RX

TX

RX

TX

LEMO

Trigger decision

10 Gbps

3.2 Gbps

Decoder

MUX

Silicon 
detectors 
data

D
EM

U
X

Processing

Clusteriser

NN IP

PCIe

PCIe Monitoring

• MVTX 144 links @ 3.2 Gbps and INTT 

raw data stream will feed two AI engines 

(one for each hemisphere)

− 24 links for MVTX and 24 links for 
INTT per AI engine

− 8b10b protocol with links driven @ 
10Gbps 

▪ tested up to 14 Gbps, with 
external loopback measurement 
at FELIX with BER < 10−16

• Raw MVTX and INTT data packets: 

− 1 MVTX packet @5 us strobe

▪ ~10 pp collisions (MB events) 
@2MHz pp collisions

− 50 INTT packets @ 100 ns strobe

• Data needs to be decoded, clustered, 

time aligned and feed the neural network 

IP

FF

Very challenging project to fit in the FPGA resources!
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The PCIe utilization

• Initial implementation at FELIX-711 (rm-4.11) by FNAL group

• Aim to use FELIX FW implementation of PCIe and its Software tools

• We use this standard well-understood benchmark model “Jet Tagger” (arXiv:1804.06913) to test the workflow 

− QKeras and converted to hls4ml to create an IP

− 16 inputs (expert variables) and 3 dense hidden layers with 64, then 32, then 32 neurons

• Current efforts to extract and only use the Wupper module (PCIe) to lighten to logic and 

keep more resources for the AI IP code

Post-implementation utilization (FELIX-711)

FELIX-711 PCI (Wupper) Jet Tagger

LUT 241K (36.3%) 28K (4.26%) 83K (12.5%)

FF 310K (23.41%) 76K (5.75%) 50K (3.76%)

BRAM 635 (29.4%) 91 (4.22%) 195 (0.09%)

DSP 72 (1.3%) 0 (0%) 72 (1.3%)

Jet Tagger

Others
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MVTX decoder

• Initial implementation of the FPGA-based MVTX decoder
• Max 128 hits per chip stored (expected physics ~50, issues with beam background?)

− Maximum latency 532 ns @ 240 MHz
• The MVTX data latency depends on the actual collision time and hit occupancy

− To provide a fixed latency to the GTM a BC information from INTT is used
− An interrupts to event size/processing time are in place not so exceed the maximum latency

▪ Separate memory per MVTX event to fast clear the data

24x
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1 RU = stave RDH 
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ALPIDE stream
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HIT MEM
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The latency constrains for the TrackGNN

• The TPC buffers can hold up to 30 μs of data

− The goal of this project is to aim for 10 μs collision-trigger latency to capture the TPC 
stream

• The Calorimeter buffers can hold up to 6.4 μs of data

− Can we improve the latency down to 5 μs to also capture the calorimeter stream?

• The latency breakdown

1. MVTX readout window 5 μs – not fixed interaction-readout latency!

2. IR -> Counting house ~0.3 μs (81 m fibres) 

3. FELIX -> AI data forward, decoder buffers ~ 0.6 μs (@240 MHz) 

4. Clusterizer + tracking + Trigger decision (currently 130 μs for TrackGNN model!)

5. AI -> GTM -> TPC FELIX (negligible, all three sits in Counting house)
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Summary

• The TrackGNN model has been developed and tested on HF event simulation for sPHENIX

− provides good precision while analyzing two hemispheres independently

• IP core generation by two teams

− Huge progress and improvement of the utilization and latency

− Might need to reassess the model used to fit within FPGA resources and latency

• FLX-712 boards to serve as AI engine installed in sPHENIX counting house

− Final push to finalize development of each FPGA component and placing them together

• Design and test the feed-back system 

• A new FLX-182 board arrived to BNL which will be the base for EIC development

− The backup plan to use it for the sPHENIX TrackGNN model (the FPGA is 3x bigger)

− Probe the possibility of using off-the-shelf card (Alveo etc.)
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Thank you for your attention

Artificial intelligence and machine learning have the potential to revolutionize our 

approach collecting, reconstructing and understanding data, and thereby 

maximizing the discovery potential in the new era of nuclear physics experiments.
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The timeline

• July 2023

− FELIX-712 and FELIX-182 setups installed at sPHENIX Counting house

• October 2023

− TrackGNN IP core should be optimized and Implemented

− Discussing between physicist, model developer, and FPGA engineers to meet the physics 
goals and constrains of the triggering system

• November 2023 

− Cosmic stream from the MVTX sent to the AI engine – tuning of the decoder parameters

• December 2023

− Cosmic stream from the INTT sent to the AI engine – tuning the alignment and event builder

• January 2024

− First pp beam at RHIC, final adjustment of the AI engine, performance studies
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Motivation – The challenges

• Real-time selection of rare decays of HF particles

− requires continuous monitoring and adjustment of the 

▪ beam trajectory (“beam spot”) – in time periods of seconds to hours, the position and shape can 
change (this will affect the HF the topology)

▪ detector alignment, conditions and anomalies 

• Adapt AI to continuous learning and changing conditions -> adaptive learning

− Development of real-time autonomous closed loop adaptive learning system
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Predicted timeline

• Project funded 

by DOE FOA

• Initial 

simulations 

constructed

• First data for 

algorithm 

training 

• MVTX & INTT 

SRO 

• Fast tracking 

& trigger  

algorithms in 

place

• Initial FPGA 

bitstream 

synthesis

• GPU 

feedback 

machine R&D

• Refine 

interface 

between 

system and 

detectors

• Improve 

algorithms 

with latest 

data stream 

and 

commissioning 

info

• Pre-

commissioning 

• Deploy device 

at sPHENIX 

pp/pA run

• EIC 

preliminary  

TDR (CD2)

• Final design 

for EIC TDR 

(CD3)

• Take 

advantage of 

new 

technology if 

required

• Deploy device 

at EIC

2021 2022 2023 2024

We are here!
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MVTX and INTT commissioning performance

• Timing in detectors on good track
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DCMDCM
DCMFEB

From sPHENIX to ePIC: Streaming + AI/ML DAQ
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Data Filter

Monitoring

Timing 
System

Detector 
Control

To 
permanent 
storage and 
nearline 
processing

O(10 Tbps) O(0.5 Tbps) O(0.1 Tbps)

FEB = Front End Electronics Board
RDO = Front End Aggregation & E/O I/F
DAM = Data Aggregation Module
EBDC = Event Buffer / Data Compressor

O(2 Pbps)

(sPHENIX)
ePIC detector

SRO + AI/ML

from Jo’s talk at 
ePIC collab. mtg
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