

Topical Workshop on Electronics for Particle Physics 2023

Anomaly Detection at the CMS Level-1 Trigger

Noah Zipper on behalf of the CMS Collaboration

The CMS Level-1 Trigger

- CMS produces more data than we can handle
 - Terabytes per second from front-end electronics
 - Need to reduce by >99%
 - Trigger's challenge is to keep interesting physics
- Real-time decisions for what to keep
 - Built on Field Programmable Gate Array (FPGA) hardware chain
 - Collisions every 25 nanoseconds mean microsecond latency constraints
- Stability is crucial
 - Errors lead to trigger "dead time" ⇒ lost data
- Experimentation is encouraged
 - Phase-1 flexibility allowed early adoption of new trigger ideas
 - 6 Global Trigger production boards + 6 for testing

Why Anomaly Detection?

Problem:

Traditional trigger strategies rely on a priori knowledge of signal or generic kinematic selections.

What if we miss new physics because we don't have the right trigger?

Solution:

Triggering on "anomalousness" offers an answer that is both

- 1. Signal agnostic Applicable to signatures that we have not had the foresight or person-power to target specifically
- 2. Highly sensitive Can boost signal efficiency to signatures limited by L1 trigger bandwidth

What is **AXOLITL**? Anomaly eXtraction Online Level-1 Trigger aLgorithm

 Variational autoencoder (VAE) trained on real unbiased data to detect outliers

 Information bottleneck created by small-dimensional latent space enforces efficient encoding ⇒ learning

- Calculated from standard Global Trigger (μGT) quantities
 - (pT, η , ϕ) hardware integer inputs from: 1 p_T^{miss}, 4 e/ γ , 4 μ , and 10 jets

Muon Trigger

Calorimeter Trigger

Model Design

Level-1 Trigger constraints informed design

Loss =
$$(1 - \beta) \|x - \hat{x}\|^2 + \beta \frac{1}{2} (\mu^2 + \sigma^2 - 1 - \log \sigma^2)$$

Reconstruction term

Full regularization term

Model Design

Level-1 Trigger constraints informed design

- Remove decoder network
 - Significant latency & resource savings, minimal performance degradation

Model Design

Level-1 Trigger constraints informed design

Loss =
$$(1-\beta)||x-x||^2 + \beta \frac{1}{2}(\mu^2 + \sigma^2 - 1 - \log \sigma^2)$$

Reconstruction term Full regularization term

- Remove decoder network
 - Significant latency & resource savings, minimal performance degradation
- Remove latent σ term from loss calculation
 - Saves even more on timing, negligible performance degradation

Development

Conversion

Implementation / Validation

Gr

Model Performance

- AXOL1TL is trained with unbiased data collected by the CMS Experiment during 2023 with √s=13.6 TeV
 - 10.5 million events used 50% for training, 50% for setting thresholds
- Dotted lines represent the score thresholds implemented in the Global Trigger Test Crate
- Significant performance improvement on various SM and BSM signals by adding AXOL1TL to the 2023 trigger menu
 - Signal samples are Monte-Carlo generated
 - Table shows performance improvement for a Higgs decaying to 2 (pseudo-) scalars to bottom quarks

h->a(bb)a(bb)

AXOLITL Rate	1 kHz	5 kHz	10 kHz
Signal Efficiency Gain	46%	100%	133%

Firmware Development

- Anomaly detection algorithms integrated into Global Trigger firmware structure
 - Anomaly score calculated in concert with other global trigger quantities & output via same links
- High-Level Synthesis (HLS) implementation of Global Trigger firmware synthesizes hardware code (VHDL) for FPGAs
 - CERN Gitlab repository for HLS dependencies
 - Generate bitfiles for for MP7 boards
- AD firmware performance:
 - Fits 2 clock cycles @ 40 MHz latency requirement
 - Resources usage small
- hls4ml simulation of Virtex-7 FPGA chip on MP7 μGT board shows MP7 firmware payload, MP7 infrastructure, and the AXOL1TL network

	Latency	LUTs	FFs	DSPs	BRAMs
AXOLITL	2 ticks 50 ns	2.1%	~0	0	0

Level-1 Menu Validation

- New Level-1 Trigger Menu is built from μGT anomaly score output link and defined thresholds
- Test vector files are generated with data and MC
 - Trigger objects & detector conditions formatted as bitstring inputs
 - Reference decision (pass or fail) for AXOL1TL made with HLS emulator
- Standard Level-1 ModelSim environment used for validating menu builds
 - Reads μGT VHDL code and simulates decisions from test vector inputs
- Perfect trigger decision bit agreement

ldx	L1 Menu Algorithm Name	Test Vector Count	HW Count	Agreement
94	L1_ADT_20000	0	0	✓
95	L1_ADT_4000	29	29	✓
103	L1_ADT_400	2618	2618	✓
108	L1_ADT_80	3331	3331	✓

Test vectors generated from Run 368566

Implementation / Validation

Test Crate Implementation

- CMS Global Trigger Test Crate
 - Identical copy of μGT board, used as backup & testing
 - Bit readout connected to data acquisition system but not configured to select events
- Prometheus monitoring tool answers real-time queries of trigger metrics
 - Used to monitor AXOL1TL rates during 2023 physics data-taking
- Test Crate model is trained on 2018 data with 4 score thresholds used to test rate boundaries
 - Used for firmware testing, not realistic proposal for trigger paths
- Consistent trigger performance shown for fill cycle
 - Single muon trigger (p_T > 22 GeV) shown for reference
 - Dips in rate due to LHC ramp-up and luminositylevelling scheme

Global Trigger Test Crate sitting underground at CERN Point 5, next to CMS Detector

15

Test Crate Validation

- For certain runs, Test Crate decisions are recorded in 2023 data files
 - Use these bits to validate emulation and show rate agreement
- Minimal (~1%) mismatches between trigger hardware and emulation
 - Mismatches clustered near decision boundaries, most likely due to rounding issue

L1 Menu Algorithm Name	Test Crate Count	Standalone Emulator Count	Mismatches
L1_ADT_20000	1	1	0
L1_ADT_4000	742	741	19
L1_ADT_400	21236	21229	253
L1_ADT_80	25468	25481	93

Summary

So far, we have shown

- A signal-agnostic trigger model sensitive to interesting physics
- A firmware implementation successfully integrated into the CMS Level-1 Trigger architecture
- A hardware trigger active on the CMS Global Trigger Test Crate that performed consistently during 2023 collisions
- Validation for all steps using HLS emulation

What's left to do

- Implement plans for downstream trigger logic
- Pending approval, integrate into production trigger and begin taking data!

References

- CMS Collaboration. "CMS Technical Design Report for the Phase 1 Upgrade of the Hadron Calorimeter".
 CERN-LHCC-2012-015, CMS-TDR-10 (2012). https://cds.cern.ch/record/1481837.
- M. Jeitler, et al. "The level-1 global trigger for the CMS experiment at LHC". JINST 2, P01006 (2007). https://doi.org/10.1088/1748-0221/2/01/P01006.
- E. Govorkova, et al. "Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider". Nat. Mach Intell. 4, 154 (2022). https://doi.org/10.1038/s42256-022-00441-3.
- FastML Team. hls4ml (Version v0.7.1) [Computer software]. https://doi.org/10.5281/zenodo.1201549.
- J. Duarte, et al. "Fast inference of deep neural networks in FPGAs for particle physics". JINST 13, P07027 (2018). https://doi.org/10.1088/1748-0221/13/07/P07027.
- Xilinx Virtex-7 FPGA. https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html.
- L1 Menu Repository. https://github.com/herbberg/l1menus.