

Science and Technology Facilities Council

A full-function Global Common Module (GCM) prototype for ATLAS Phase-II upgrade

Shaochun Tang, <u>Weiming Qian</u> On behalf of the ATLAS Collaboration

Outline

- Introduction
 - ATLAS Phase-II Trigger architecture
- Global Common Module (GCM) full-function prototype
 - Technology choices
 - Challenges and design methodology
 - Power simulation
 - Signal simulation
 - Thermal simulation
- > Summary

Introduction

- Phase-II Upgrade parameters
 - HL-LHC luminosity
 - 5~7.5×10³⁴ cm⁻²s⁻¹
 - Pileup μ ~200
 - Multi-level trigger
 - First level (LO)
 - Trigger rate 1MHz
 - Latency rate 10µs

- TDAQ Strategy
 - New Global Trigger subsystem
 - Performing complex algorithms, like those used in Phase-1 high-level trigger software
 - Full granularity calorimeter data
 - Full event on single node

Global Trigger Architecture

• ~49 nodes

Global Central Trigger Processor Interface (gCTPi)

- 1 node
- > One hardware platform for all three functional layers
 - Global Common Module (GCM)
 - Simplify firmware/software development
 - Sharing the common infrastructure
 - Simplify the long-term maintenance
 - Reducing the number of spare modules needed

GCM Technology Choices

- > Platform
 - ATCA front board
 - 1 MUX node + 1 GEP node per board
- ➢ FPGA
 - Versal Premium adaptive SoC VP1802 for MUX node
 - Versal Premium adaptive SoC VP1802 for GEP/gCTPi node
 - VSVA5601 package
 - 75x75, 0.92mm pitch
 - Minimizing crosstalk
- > Optics
 - 20 Firefly 28G parallel optical engines
 - 12 ch/optical engine
- ➢ PCB
 - 26 layers
 - Via-in-pad
 - Backdrill

Challenges and Design Methodology

- High-speed, high-power and high-density complex PCB design
 - Signal integrity
 - 25+Gbps
 - Power integrity
 - 400 W
 - Thermal integrity
 - VP1802 ~80° C
 - Firefly ~50° C
- Simulation integrated into design flow
- Design for test
 - Integrated PCB test coupon
 - Special test launch points

Power Design Challenges

- Each adaptive SoC VP1802
 - Minimum of 9 power rails
- ➤ GCM with two adaptive SoC VP1802
 - ~20 power rails in total

Minimum Rails (No Power Management) - Low Voltage

Adaptive SoC VP1802 Power Estimation

- Current Best Estimate (CBE) for a GEP node is 107W
 - Maximum Expected Value (MEV) is 131W
 - Maximum Possible Value (MPV) is 165W
- ➢ GCM hardware is targeted to MPV power value
 - Maximum GEP node VCCINT (0.7V) current ~170A
- ➢ 26-layer PCB
 - 4 power planes with a total thickness of 6 oz.
 - 12 GND planes with a total thickness of 7 oz.

	Description						Vias							
Layer	Copper (oz)	Layer	50Ω SE	93Ω DIFF (Stripline)	93Q DIFF (Stripline)	100Q DIFF	Trough	,	Backdrill L26-L23	Backdrill L26-L21	Backdrill L26-L19	Backdrill L26-L17	Backdrill L26-L12	
L1	0.5	TOP	8	4.6-3.9-4.6		4-4-4		1						
L2	0.5	GND						2						
L3	1	PWR1						3						
L4	0.5	GND						-4						
L5	0.5	SIG1	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		5						
L6	0.5	GND						6						
L7	0.5	SIG2	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		7						
L8	0.5	GND						8						
L9	0.5	SIG3	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		9						
L10	0.5	GND						10						
L11	0.5	SIG4	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		11					///////////////////////////////////////	
L12	1	GND						12					11	
L13	2	PWR2						13						
L14	2	PWR3						14						
L15	1	GND						15						
L16	0.5	SIG5	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		16				///////////////////////////////////////		
L17	0.5	GND						17						
L18	0.5	SIG6	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		18			///////////////////////////////////////			
L19	0.5	GND						19						
L20	0.5	SIG7	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		20		///////////////////////////////////////				
L21	0.5	GND						21						
L22	0.5	SIG8	4	3.6-4.9-3.6	3.4-4.1-3.4	3.5-4.5-3.5		22 //	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
L23	0.5	GND						23						
L24	1	PWR4						24						
L25	0.5	GND						-25						
L26	0.5	BOT	8	4.6-3.9-4.6		4-4-4		26						
ckness (mil)														
L1-L26		<102 mil												

- Initial VCCINT layout
 - Excessive DC voltage drop
 - PCB copper itself consumes16 W too hot
 - Via current spikes
 - Long term stability issue

Post-optimization

- Strategic copper fills in signal layers
 - DC voltage drop on VCCINT much reduced
 - PCB copper power consumption is halved
 - Via current spikes are suppressed

Smaller current power rail could also have problem

- GTAVCC_B excessive voltage offset between banks

GTAVCC_B_0.92V @15A

Before optimization

After optimization

- FPGA BGA breakout optimization
 - Via-in-pad + 22mil dog-bone antipad + backdrill
 - Target differential impedance for Xilinx MGT is 930hm

=	=	=	Ξ	
		_		
=	=	-7	=	
=	=		=	
	=	V-V	_	
		_		-
=	=	=	=	
=	-	=	=	
	_	_	=	

Differential via TDR response to Tr=20ps Minimum impedance ~83 ohm

Differential via S-parameters insertion loss SDD21 and return loss SDD11

- Firefly breakout optimization
 - SMA pads
 - Cutout in the underlying plane to reduce capacitance
 - Differential via configuration
 - 40mil separation, 32mil anti-pad, backdrill + 4 GND vias

Differential TDR response to Tr=20ps Firefly diff SMA pads min impedance ~92.5 ohm Diff via min impedance ~91 ohm

Differential via S-parameters insertion loss SDD21 and return loss SDD11

- > Typical 25G channel performance
 - Impedance control very well over 3-D structures
 - Insertion loss curve smooth roll-off

Differential TDR response to Tr=20ps

Differential via S-parameters SDD21 and SDD11

Typical 25G channel performance

Comparing to Industry standard CEI-28G-VSR

Used by both AMD (Xilinx) and Firefly

- Special connector launch design for 25G link test
 - Good performance to 40GHz

2.4mm Connector Launch TDR response to Tr=20ps Minimum impedance ~47.5 ohm

insertion loss SD21 and return loss SD11

- Xilinx Crosstalk Requirement for CEI-28G-VSR
 - Rx-Rx
 - < -40dB
- ➢ GCM Rx-Rx
 - Majority
 - < -42dB
 - But one
 - ~32dB
 - Optimization
 - Swapping routing layers

Before optimization

After optimization

GCM Thermal Simulation

Heatsink design and simulation are outsourced

- VP1802, 130mm x 70 mm x 17 mm on-board space reserved

- Heatsink design with embedded heat pipe
- Air flow: 500LFM
- Case temperature: 66 ℃ @ 160W
- Thermal resistance: ~0.29 ℃/W

nVent SCHROFF ATCA shelf maximum air flow > 700LFM

GCM Thermal Simulation

Heatsink design and simulation are outsourced Firefly optical engine, vertical block

Provided by Alpha Novatech

Summary

- A full-function GCM prototype has been designed for the new Global Trigger of ATLAS Phase-II Upgrade.
 - A high-speed, high power and high density ATCA front board.
- A systematic methodology has been adopted during this GCM design process to achieve simultaneously
 - Signal Integrity
 - Power Integrity
 - Thermal Integrity
- The Preliminary Design Review of this design is scheduled at end of Oct 2023.

Backup

VP1802 Power Estimation

PDM Estimation	Node	Logic	BRAM18	URAM	DSP	Clock	Toggle Rate	GTM TX	GTM RX	GTY TX	GTY RX	Total Power (W)	Junction T with Hgh Profile Heatsink (about 0.4 C/W)
	MUX25G	1.0M / 30%	2965 / 30%	0/0%	0/0%	240MHz	12.50%	48 @ 25.78125Gb/s	48 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	62	44.4 C
XCVP1802-1LSVC4072E (0.7V)	MUX10G	1.0M / 30%	2965/30%	0/ 0%	0/0%	240MHz	12.50%	48 @ 25.78125Gb/s	72 @ 12.8Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	70	47.8 C
CBE	GEP	1.7M / 50%	4950 / 50%	1275 / 50%	7176 / 50%	240MHz	12.50%	1 @ 25.78125Gb/s	72 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	107	62.4 C
	MUX25G	1.0M / 30%	2965 / 30%	0/ 0%	0/0%	320MHz	12.50%	48 @ 25.78125Gb/s	48 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	73	48.6 C
XCVP1802-1LSVC4072E (0.7V)	MUX10G	1.0M / 30%	2965 / 30%	0/0%	0/0%	320MHz	12.50%	48 @ 25.78125Gb/s	72 @ 12.8Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	81	51.9 C
MEV	GEP	1.7M / 50%	4950 / 50%	1275 / 50%	7176 / 50%	320MHz	12.50%	1 @ 25.78125Gb/s	72 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	131	71.8 C
	MUX25G	1.7M / 50%	4950 / 50%	0/0%	0/0%	320MHz	12.50%	48 @ 25.78125Gb/s	48 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	106	62.1 C
XCVP1802-1LSVC4072E (0.7V)	MUX10G	1.7M / 50%	4950 / 50%	0/0%	0/ 0%	320MHz	12.50%	48 @ 25.78125Gb/s	72 @ 12.8Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	108	62.8 C
MPV	GEP	2.3M / 70%	6917/70%	1785 / 70%	10051 / 70%	320MHz	12.50%	1 @ 25.78125Gb/s	72 @ 25.78125Gb/s	4 @ 25.78125Gb/s	4 @ 25.78125Gb/s	165	86.0 C

- For all three type of Nodes, the GT links are the same in CBE, MEV and MPV. The differences are the clock frequency and resource usage.
 - CBE for GEP is about 107 W. (50% resources @ 240 MHz).
 - MEV for GEP is about 131 W. (50% resources @ 320 MHz).
 - MPV for GEP is about 165 W. (70% resources @ 320 MHz).

Traditional FPGA break-out pattern

Simulated TDR response

GCM Thermal Simulation

Heatsink design and simulation are outsourced Firefly, horizontal block

- With 100mmx35mmx13mm heatsink, 6 modules horizontal group can meet 50 °C target under 400 LFM airflow.
- High performance gap pad material that can be used to compensate for the tolerance stack up from the multiple devices

Provided by Alpha Novatech

GCM Thermal Simulation

Heatsink design and simulation are outsourced

- VP1802, 130mm x 70 mm x 17 mm on-board space reserved

- Xilinx MGT Crosstalk Requirement for CEI-28G-VSR
 - Tx-Tx < -35dB
- ➢ GCM Tx-Tx < -36.8dB</p>
 - Worst case

- Xilinx Crosstalk Requirement for CEI-28G-VSR
 - Tx-Rx < -45dB
- ➢ GCM Tx-Rx < -60dB</p>
 - Typical case

