

Science and Technology Facilities Council

A full-function Global Common Module (GCM) prototype for ATLAS Phase-II upgrade

Shaochun Tang, Weiming Qian On behalf of the ATLAS Collaboration

Outline

- \triangleright Introduction
	- ATLAS Phase-II Trigger architecture
- Global Common Module (GCM) full-function prototype
	- Technology choices
	- Challenges and design methodology
	- Power simulation
	- Signal simulation
	- Thermal simulation
- \triangleright Summary

Introduction

\triangleright Phase-II Upgrade parameters

- HL-LHC luminosity
	- $5 7.5 \times 10^{34}$ cm⁻²s⁻¹
	- Pileup μ ~200
- Multi-level trigger
	- First level (L0)
		- Trigger rate 1MHz
		- Latency rate 10μs

- \triangleright TDAQ Strategy
	- New Global Trigger subsystem
		- Performing complex algorithms, like those used in Phase-1 high-level trigger software
			- Full granularity calorimeter data
			- Full event on single node

Global Trigger Architecture

- Global Central Trigger Processor Interface (gCTPi)
	- 1 node
- \triangleright One hardware platform for all three functional layers
	- Global Common Module (GCM)
		- Simplify firmware/software development
			- Sharing the common infrastructure
		- Simplify the long-term maintenance
			- Reducing the number of spare modules needed

GCM Technology Choices

- \triangleright Platform
	- ATCA front board
		- 1 MUX node + 1 GEP node per board
- \triangleright FPGA
	- Versal Premium adaptive SoC VP1802 for MUX node
	- Versal Premium adaptive SoC VP1802 for GEP/gCTPi node
	- VSVA5601 package
		- 75x75, 0.92mm pitch
		- Minimizing crosstalk
- **≻** Optics
	- 20 Firefly 28G parallel optical engines
		- 12 ch/optical engine
- \triangleright PCB
	- 26 layers
	- Via-in-pad
	- Backdrill

Challenges and Design Methodology

- > High-speed, high-power and high-density complex PCB design
	- Signal integrity
		- \cdot 25+Gbps
	- Power integrity
		- 400 W
	- Thermal integrity
		- $VP1802 80°$ C
		- Firefly $~50^{\circ}$ C
- \triangleright Simulation integrated into design flow
- \triangleright Design for test
	- Integrated PCB test coupon
	- Special test launch points

Power Design Challenges

- ▶ Each adaptive SoC VP1802
	- Minimum of 9 power rails
- ▶ GCM with two adaptive SoC VP1802
	- ~20 power rails in total

Minimum Rails (No Power Management) - Low Voltage

Adaptive SoC VP1802 Power Estimation

- Current Best Estimate (CBE) for a GEP node is 107W
	- Maximum Expected Value (MEV) is 131W
	- Maximum Possible Value (MPV) is 165W
- GCM hardware is targeted to MPV power value
	- Maximum GEP node VCCINT (0.7V) current ~170A
- 26-layer PCB
	- 4 power planes with a total thickness of 6 oz.
	- 12 GND planes with a total thickness of 7 oz.

- > Initial VCCINT layout
	- Excessive DC voltage drop
		- PCB copper itself consumes16 W too hot
	- Via current spikes
		- Long term stability issue

\triangleright Post-optimization

- Strategic copper fills in signal layers
	- DC voltage drop on VCCINT much reduced
	- PCB copper power consumption is halved
	- Via current spikes are suppressed

 \triangleright Smaller current power rail could also have problem

– GTAVCC_B excessive voltage offset between banks

GTAVCC_B_0.92V @15A

Before optimization

After optimization

- **FPGA BGA breakout optimization**
	- Via-in-pad + 22mil dog-bone antipad + backdrill
	- Target differential impedance for Xilinx MGT is 93ohm

Differential via TDR response to Tr=20ps Minimum impedance ~83 ohm

Differential via S-parameters insertion loss SDD21 and return loss SDD11

- \triangleright Firefly breakout optimization
	- SMA pads
		- Cutout in the underlying plane to reduce capacitance
	- Differential via configuration
		- 40mil separation, 32mil anti-pad, backdrill + 4 GND vias

Differential TDR response to Tr=20ps Firefly diff SMA pads min impedance ~92.5 ohm Diff via min impedance ~91 ohm

- Typical 25G channel performance
	- Impedance control very well over 3-D structures
	- Insertion loss curve smooth roll-off

Typical 25G channel performance

– Comparing to Industry standard CEI-28G-VSR

• Used by both AMD (Xilinx) and Firefly

- \triangleright Special connector launch design for 25G link test
	- Good performance to 40GHz

2.4mm Connector Launch TDR response to Tr=20ps Minimum impedance ~47.5 ohm

insertion loss SD21 and return loss SD11

- \triangleright Xilinx Crosstalk Requirement for CEI-28G-VSR
	- Rx-Rx
		- \bullet < -40dB
- \triangleright GCM Rx-Rx
	- Majority
		- \bullet < -42dB
	- But one
		- \cdot ~32dB
	- Optimization
		- Swapping routing layers

Before optimization **After optimization**

Oct 2023 TWEPP2023, Sardinia Italy 18

GCM Thermal Simulation

 \triangleright Heatsink design and simulation are outsourced

– VP1802, 130mm x 70 mm x 17 mm on-board space reserved

- Heatsink design with embedded heat pipe
- Air flow: 500LFM
- Case temperature: 66℃ @ 160W
- Thermal resistance: ~0.29 °C/W

nVent SCHROFF ATCA shelf nVent SCHROFF ATCA show
maximum air flow > 700LFM

GCM Thermal Simulation

\triangleright Heatsink design and simulation are outsourced

– Firefly optical engine, vertical block

Provided by Alpha Novatech

Summary

- \triangleright A full-function GCM prototype has been designed for the new Global Trigger of ATLAS Phase-II Upgrade.
	- A high-speed, high power and high density ATCA front board.
- \triangleright A systematic methodology has been adopted during this GCM design process to achieve simultaneously
	- Signal Integrity
	- Power Integrity
	- Thermal Integrity
- \triangleright The Preliminary Design Review of this design is scheduled at end of Oct 2023.

Backup

VP1802 Power Estimation

- \triangleright For all three type of Nodes, the GT links are the same in CBE, MEV and MPV. The differences are the clock frequency and resource usage.
	- CBE for GEP is about 107 W. (50% resources \varnothing 240 MHz).
	- MEV for GEP is about 131 W. (50% resources \varnothing 320 MHz).
	- MPV for GEP is about 165 W. (70% resources \varnothing 320 MHz).

Traditional FPGA break-out pattern

Simulated TDR response

GCM Thermal Simulation

\triangleright Heatsink design and simulation are outsourced – Firefly, horizontal block

- With 100mmx35mmx13mm heatsink, 6 modules horizontal group can meet 50 °C target under 400 LFM airflow.
- \blacksquare High performance gap pad material that can be used to compensate for the tolerance stack up from the multiple devices

Provided by Alpha Novatech

GCM Thermal Simulation

 \triangleright Heatsink design and simulation are outsourced

– VP1802, 130mm x 70 mm x 17 mm on-board space reserved

- ▶ Xilinx MGT Crosstalk Requirement for CEI-28G-VSR
	- $-$ Tx-Tx $<$ -35dB
- \triangleright GCM Tx-Tx < -36.8dB
	- Worst case

- ▶ Xilinx Crosstalk Requirement for CEI-28G-VSR
	- $-$ Tx-Rx $<$ -45dB
- \triangleright GCM Tx-Rx < -60dB
	- Typical case

