
FPGA Design with High Level
Synthesis

Methodology, gains, and pitfalls

Michalis Bachtis

University of California, Los Angeles
On behalf of the CMS Collaboration

TWEPP 2023

● High-level synthesis (HLS) enables building FPGA firmware in C
● A “compiler” is generating HDL code based on a model that includes

information about the FPGA resources and speed
● Since C code is serial, several directives are needed to write parallel code

○ Directives are defined by the user
● Fixed point precision is included in C as additional libraries
● Output product: IP block or HDL code
● Several gains but also pitfalls

Outline

● Introduction to HLS with some representative examples
○ Using the AMD/Xilinx tools and FPGAs but similar tools exist in other architectures

● Real design implementations from CMS experiment and beyond
● Proposed design methodology
● Discussion

Introduction

2

Introduction to High Level Synthesis

3

Example: HDL adder of three 32 bit numbers

4

a

b

c

+

c_reg
d

● Instantiating a pipeline of two steps
○ Step 1: add a+b → store the output in ab register. register c to c_reg so that the

data are aligned in the next clock
○ Step 2: add ab+c_reg to create the output that is stored in a register

● Two clock cycles, latency of 1 cycle
● Output is registered

ab

+

● C is written with fixed point
numbers

● No specification of register
stages
○ only that the design should

be pipelined
● Implementation actually

depends on the compiler
that needs target clock
speed

Example: HLS adder of three 32 bit numbers

5

Fixed point integer library

32 bit unsigned integer

Pragma directives.

Adder logic

Clock: 100 MHz

a
b +
c

Combinational logic: compiler knows FPGA can do it in
1 clock, latency of 0 cycles

Clock: 500 MHz

a

b

c

+

c_reg

ab

+

Two step pipeline. Latency of 1 cycle The difference
with HDL is that it did not register the output.
One can add a compiler directive to do this

● HLS will make “optimal” logic based on the intended performance
○ But the developer relies on the compiler. Not much personal freedom

● Not that in HDL the developer needs to keep track of aligning the data in
the pipeline
○ Painful in complex designs to keep track of everything
○ HLS automatically registers the data when it creates pipelines

What do we learn from this trivial example?

6

● DSP cores are silicon cores in
AMD/Xilinx FPGAs
○ Perform fast multiplication and

other operations
■ Saves many LUTs that would be

used for multipliers
○ Are usually instantiated in HDL with

xilinx internal libraries

● HLS very effective in configuring
and instantiating DSPs

● DSPs have variable latency
○ HLS tunes it

DSP cores

7

 DSP48E2 #(
 // Feature Control Attributes: Data Path Selection
 .A_INPUT("DIRECT"), // Selects A input source, "DIRECT" (A port) or "CASCADE" (ACIN port)
 .AMULTSEL("A"), // Selects A input to multiplier (A, AD)
 .BMULTSEL("B"), // Selects B input to multiplier (AD, B)
 .B_INPUT("DIRECT"), // Selects B input source, "DIRECT" (B port) or "CASCADE" (BCIN port)
 .PREADDINSEL("A"), // Selects input to pre-adder (A, B)
 .RND(48'h000000000000), // Rounding Constant
 .USE_MULT("MULTIPLY"), // Select multiplier usage (DYNAMIC, MULTIPLY, NONE)
 .USE_SIMD("ONE48"), // SIMD selection (FOUR12, ONE48, TWO24)
 .USE_WIDEXOR("FALSE"), // Use the Wide XOR function (FALSE, TRUE)
 .XORSIMD("XOR24_48_96"), // Mode of operation for the Wide XOR (XOR12, XOR24_48_96)
 // Pattern Detector Attributes: Pattern Detection Configuration
 .AUTORESET_PATDET("NO_RESET"), // NO_RESET, RESET_MATCH, RESET_NOT_MATCH
 .AUTORESET_PRIORITY("RESET"), // Priority of AUTORESET vs. CEP (CEP, RESET).
 .MASK(48'h3fffffffffff), // 48-bit mask value for pattern detect (1=ignore)
 .PATTERN(48'h000000000000), // 48-bit pattern match for pattern detect
 .SEL_MASK("MASK"), // C, MASK, ROUNDING_MODE1, ROUNDING_MODE2
 .SEL_PATTERN("PATTERN"), // Select pattern value (C, PATTERN)
 .USE_PATTERN_DETECT("NO_PATDET"), // Enable pattern detect (NO_PATDET, PATDET)
 // Programmable Inversion Attributes: Specifies built-in programmable inversion on specific pins
 .IS_ALUMODE_INVERTED(4'b0000), // Optional inversion for ALUMODE
 .IS_CARRYIN_INVERTED(1'b0), // Optional inversion for CARRYIN
 .IS_CLK_INVERTED(1'b0), // Optional inversion for CLK
 .IS_INMODE_INVERTED(5'b00000), // Optional inversion for INMODE
 .IS_OPMODE_INVERTED(9'b000000000), // Optional inversion for OPMODE
 .IS_RSTALLCARRYIN_INVERTED(1'b0), // Optional inversion for RSTALLCARRYIN
 .IS_RSTALUMODE_INVERTED(1'b0), // Optional inversion for RSTALUMODE
 .IS_RSTA_INVERTED(1'b0), // Optional inversion for RSTA
 .IS_RSTB_INVERTED(1'b0), // Optional inversion for RSTB
 .IS_RSTCTRL_INVERTED(1'b0), // Optional inversion for RSTCTRL
 .IS_RSTC_INVERTED(1'b0), // Optional inversion for RSTC
 .IS_RSTD_INVERTED(1'b0), // Optional inversion for RSTD
 .IS_RSTINMODE_INVERTED(1'b0), // Optional inversion for RSTINMODE
 .IS_RSTM_INVERTED(1'b0), // Optional inversion for RSTM
 .IS_RSTP_INVERTED(1'b0), // Optional inversion for RSTP
 // Register Control Attributes: Pipeline Register Configuration
 .ACASCREG(INPUT_REGISTERS), // Number of pipeline stages between A/ACIN and ACOUT (0-2)
 .ADREG(1), // Pipeline stages for pre-adder (0-1)
 .ALUMODEREG(0), // Pipeline stages for ALUMODE (0-1)
 .AREG(INPUT_REGISTERS), // Pipeline stages for A (0-2)
 .BCASCREG(INPUT_REGISTERS), // Number of pipeline stages between B/BCIN and BCOUT (0-2)
 .BREG(INPUT_REGISTERS), // Pipeline stages for B (0-2)
 .CARRYINREG(1), // Pipeline stages for CARRYIN (0-1)
 .CARRYINSELREG(1), // Pipeline stages for CARRYINSEL (0-1)
 .CREG(C_REGISTERS), // Pipeline stages for C (0-1)
 .DREG(1), // Pipeline stages for D (0-1)
 .INMODEREG(0), // Pipeline stages for INMODE (0-1)
 .MREG(MULT_REGISTERS), // Multiplier pipeline stages (0-1)
 .OPMODEREG(0), // Pipeline stages for OPMODE (0-1)
 .PREG(OUTPUT_REGISTERS) // Number of pipeline stages for P (0-1)

++)
 DSP48E2_inst (

 // Cascade outputs: Cascade Ports
 .ACOUT(), // 30-bit output: A port cascade
 .BCOUT(), // 18-bit output: B cascade
 .CARRYCASCOUT(), // 1-bit output: Cascade carry
 .MULTSIGNOUT(), // 1-bit output: Multiplier sign cascade
 .PCOUT(pcout), // 48-bit output: Cascade output
 // Control outputs: Control Inputs/Status Bits
 .OVERFLOW(), // 1-bit output: Overflow in add/acc
 .PATTERNBDETECT(), // 1-bit output: Pattern bar detect
 .PATTERNDETECT(), // 1-bit output: Pattern detect
 .UNDERFLOW(), // 1-bit output: Underflow in add/acc
 // Data outputs: Data Ports
 .CARRYOUT(), // 4-bit output: Carry
 .P(pout), // 48-bit output: Primary data
 .XOROUT(), // 8-bit output: XOR data
 // Cascade inputs: Cascade Ports
 .ACIN(30'd0), // 30-bit input: A cascade data
 .BCIN(18'd0), // 18-bit input: B cascade
 .CARRYCASCIN(1'b0), // 1-bit input: Cascade carry
 .MULTSIGNIN(1'b0), // 1-bit input: Multiplier sign cascade
 .PCIN(pc_in), // 48-bit input: P cascade
 // Control inputs: Control Inputs/Status Bits
 .ALUMODE(4'd0), // 4-bit input: ALU control
 .CARRYINSEL(3'b000), // 3-bit input: Carry select
 .CLK(clk), // 1-bit input: Clock
 .INMODE(5'd0), // 5-bit input: INMODE control
 .OPMODE(OPMODE), // 9-bit input: Operation mode
 // Data inputs: Data Ports
 .A(a), // 30-bit input: A data
 .B(b), // 18-bit input: B data
 .C(c), // 48-bit input: C data
 .CARRYIN(1'b0), // 1-bit input: Carry-in
 .D(27'd0), // 27-bit input: D data
 // Reset/Clock Enable inputs: Reset/Clock Enable Inputs
 .CEA1(1'b1), // 1-bit input: Clock enable for 1st stage AREG
 .CEA2(1'b1), // 1-bit input: Clock enable for 2nd stage AREG
 .CEAD(1'b1), // 1-bit input: Clock enable for ADREG
 .CEALUMODE(1'b1), // 1-bit input: Clock enable for ALUMODE
 .CEB1(1'b1), // 1-bit input: Clock enable for 1st stage BREG
 .CEB2(1'b1), // 1-bit input: Clock enable for 2nd stage BREG
 .CEC(1'b1), // 1-bit input: Clock enable for CREG
 .CECARRYIN(1'b1), // 1-bit input: Clock enable for CARRYINREG
 .CECTRL(1'b1), // 1-bit input: Clock enable for OPMODEREG and CARRYINSELREG
 .CED(1'b1), // 1-bit input: Clock enable for DREG
 .CEINMODE(1'b1), // 1-bit input: Clock enable for INMODEREG
 .CEM(1'b1), // 1-bit input: Clock enable for MREG
 .CEP(1'b1), // 1-bit input: Clock enable for PREG
 .RSTA(rst), // 1-bit input: Reset for AREG
 .RSTALLCARRYIN(rst), // 1-bit input: Reset for CARRYINREG
 .RSTALUMODE(rst), // 1-bit input: Reset for ALUMODEREG
 .RSTB(rst), // 1-bit input: Reset for BREG
 .RSTC(rst), // 1-bit input: Reset for CREG
 .RSTCTRL(rst), // 1-bit input: Reset for OPMODEREG and CARRYINSELREG
 .RSTD(rst), // 1-bit input: Reset for DREG and ADREG
 .RSTINMODE(rst), // 1-bit input: Reset for INMODEREG
 .RSTM(rst), // 1-bit input: Reset for MREG
 .RSTP(rst) // 1-bit input: Reset for PREG
);

// End of DSP48E2_inst instantiation

HDL (a+b*c)

HLS: a+b*c

● An adder that reads a LUT
and and adds a constant

● A LUT of 512x72 bits
instantiated
○ In Ultrascale architecture = 1

BRAM
● At 100 MHz

○ Latency of 1 cycle [to read the
ROM]

● At 500 MHz
○ Latency of 2 cycles [automatic

register in the output of ROM]
● When increasing the width of

more than 72 or if we add
more than 52 entries
○ Automatically instantiates

more BRAMs

Lookup tables

8

● Memory instantiated as global array instantiated outside the
method

● Simple handshake, write and read from memory
● Instantiates 2 BRAMs (true dual port)
● Latency of 1 cycle

Memory

9

● The #pragma command breaks the array into individual registers
● Instead of 2 BRAMs it instantiates 16k Flip-flops
● With this pragma, multiple array entries are accessible at any cycle [since

it is a register] but without it only one (two) entries can be accessed
because it is a BRAM

● From C perspective, the array is defined. Actual implementation depends
on #pragma entries

Registers (Flip flops)

10

● In Time Multiplexed designs: implement one algorithm core and feed
several chunks of data. As an example let’s assume:
○ 6 sets of three 16 bit numbers (a,b,c) are arriving in the system
○ For each set we need to calculate a+b*c [with a DSP]

● We have a fully pipelined option and an option to reuse logic

Playing with the pipeline, reusing logic

11

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

DSPFF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

Fully pipelined design

12

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

a
b
c

DSP

Latency of 3 cycles @ 500 MHz:
takes new data every cycle
6 DSPs instantiated

Unroll the loop
[like a generate
statement]

DSP reuse design

13

Pipeline the loop. Reuse logic

Pipeline the
loop

Allow only
one
multiplier

13

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

DSPFF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

● Latency of 7 cycles, one DSP
● New data every 6 cycles

Comparison of the code

14

● We did not specify anything in the code to force a shift register…
○ We could have “helped” the compiler by mimicking the array manipulations in C

● In fact the design was implemented with muxes

Pitfall. What did the compiler really build?

15

Pipeline the loop. Reuse logic

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

DSP

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

● Does it matter?
○ Sometimes it does because in large designs the routing congestion could get the

implementation to fail..

● HLS provides the capability to instantiate complex firmware using simple C
code + a set of #pragma directives

● HLS tunes the code based on the target clock speed by adding register
stages and tuning the internal pipelines of silicon modules [DSPs, BRAMs]

● In complex mathematical operations, the designer focuses on the
algorithm and the alignment of data within long pipelines is done by the
HLS compiler
○ IMO, the biggest advantage of this approach

● HLS can be configured to manage the data in a smarter way (e.g reuse
logic) but the user has to think and check what is the supporting logic that
is instantiated by the compiler
○ E.g shift registers vs muxes.
○ Part of the C code can be rewritten to mimic HDL, forcing the data management

firmware to what the user wants
● My personal preference is to perform the data management in HDL and

connect it with firmware HLS core that implements the computationally
intensive algorithms

What have we learned from the small examples?

16

Real-world designs from CMS

17

● In the context of HLS evaluation we implemented the full version of the
CMS Overlap Muon Track Finder (OMTF) firmware in both HDL and HLS
○ OMTF performs muon reconstruction in the L1 trigger of CMS

Comparison of HDL vs HLS: OMTF

18

● Very similar performance for both approaches
● Proof that one does not have to pay a big price in FPGA resources to gain

from the HLS approach

Virtex 7 FPGA

● CMS Barrel Muon Track
finder upgrade for Run-3

● Muon tracking at FPGAs
○ Used to be lookup table

based
● New approaches: Real

trajectory reconstruction
with approximate Kalman
Filter
○ Propagation of

parameters
○ Fitting

● Requires many
calculations
○ Exploit DSP cores

An approximate Kalman Filter in CMS Run-2 (I/II)

19

TWEPP 2018(!)

● New Kalman Filter version written in HLS
● Instantiated into the same FPGA

(together with the nominal algorithm)
○ Took data in parallel

● It did fit the latency of about 250 ns!
● Nominal algorithm since the beginning of

Run-3
○ First HLS running firmware in data taking

An approximate Kalman Filter in CMS Run-2 (II/II)

20

● Firmware emulation → very important for HEP experiments
● With HLS we can load the C fixed point libraries in our emulation code and

make the firmware and software agree much faster
○ Usually took years !

● Example: Kalman Filter Muon Track Finder was at 100% agreement
already at the beginning of Run-3

A gain of HLS: Faster data vs emulator agreement

21

● Fast deep neural networks in FPGAs with HLS

Another usage: Real Time Machine Learning - HLS4ML

22

HLS4ML

Machine learning training
software

1804.06913

● Translate output of ML training tools to HLS code
○ With fixed point precision
○ Prune nodes that do not have a major impact

● Optimize the design by reusing logic and picking the speed
○ With HLS, reuse logic for very big networks

● Feed IP core into the FPGA

https://fastmachinelearning.org/hls4ml/index.html
https://arxiv.org/abs/1804.06913

● Using the HLS reuse logic allows to sacrifice throughput for resources
○ But without having to recode the firmware !

Example from HLS4ML: reusing logic

23

1804.06913

https://arxiv.org/abs/1804.06913

● HLS thoroughly used in the CMS Trigger Upgrade for HL-LHC
● Allowed us to train students and postdocs in firmware developments so

that they can provide algorithm cores in the final system
● Allowed to have the same developer for firmware and emulator in the

experiment software
● Engineering effort focused on infrastructure and of course putting

things together

The Phase-2 CMS Trigger

24

● Modern devices split in different regions (SLRs)
● Some limitations in crossing between them
● Standard HLS modules do not nominally cross

○ There are some tools that do
● This suggests splitting the design with several small HLS modules
● And use HDL “glue” to connect them together
● Also improves compilation time - HLS compiler is slow!

Stacked Silicon Interconnect + HLS

25

Summary of findings and Methodology

26

● Optimal results obtained by both HLS cores and HDL
● Algorithms → HLS
● Data management, SLR crossing etc → HDL

HLS algorithm + HDL data management+glue

27

FPGA
SLR

Link In

Deserialization
(HDL)

Algorithm
(HLS)

SLR
Crossing (HDL)

Algorithm
(HLS)

Deserialization
(HDL)

Algorithm
(HLS)

SLR
Crossing (HDL)

SLR
Crossing (HDL)

Link In

FIFOs
(HDL)

Serialization
(HDL)

Link Out

● Many small designs more optimal than a very big one
○ Compiler much more efficient

● Two stages of simulation
○ Simulation of C code → Check fixed point precision and algorithm output

■ Also compiles C with GCC and checks if the C code is correct
○ C/RTL co-simulation → Verify that the compiler did the right thing

■ Almost always true except in very aggressive complex designs
○ Simulate the IP core with the rest of the HDL code (e.g in AMD/Xilinx Vivado)

● Pipelining and logic reuse
○ My preference → fully pipelined HLS cores + logic to feed data in HDL
○ Compiler is very effective with fully pipelined designs and you avoid the pitfall of

muxes vs shift registers etc
● If the compiler takes many hours, something is going wrong

○ Memory intensive!
○ Sometimes it happens in correct designs

■ Compiler is a black box

Proposed guidelines for algorithm development in HLS

28

● High Level Synthesis is becoming the new norm not only in particle
physics but also in the industry
○ The AI revolution and FPGA acceleration of software routines have pushed

companies to deliver efficient and powerful tools
● In designs present in particle physics experiments where often custom link

protocols deliver the data a combination of HDL and HLS is optimal
○ Data management with HDL, Algorithms in HLS avoids common pitfalls

● Independently of the technical gains, there is the human factor
○ HLS is the first step to train a non-expert in FPGA firmware
○ Non-experts can become exports in HLS and deliver complex designs
○ Eventually they also learn HDL (!)

Summary

29

