FPGA Design with High Level
Synthesis
Methodology, gains, and pitfalls

Michalis Bachtis

University of California, Los Angeles
On behalf of the CMS Collaboration

TWEPP 2023

Introduction

High-level synthesis (HLS) enables building FPGA firmware in C
A “compiler” is generating HDL code based on a model that includes
information about the FPGA resources and speed

Since C code is serial, several directives are needed to write parallel code
o Directives are defined by the user

Fixed point precision is included in C as additional libraries
Output product: IP block or HDL code
Several gains but also pitfalls

Qutline

Introduction to HLS with some representative examples
o Using the AMD/Xilinx tools and FPGAs but similar tools exist in other architectures

Real design implementations from CMS experiment and beyond
Proposed design methodology
Discussion

Ve

Introduction to High Level Synthesis

Example: HDL adder of three 32 bit numbers

module adder(
input wire clk,
input wire [31:0]
input wire [31:0]

input wire [31:0] c, a

output reg [33:0]
); b ‘+ ab
reg [31:0] c_reg;

reg [32:0] ab; <::::>———> | —
always @ (posedge clk) begin C —> "

ab<=a+b; c-re9
C_reg<=c;
d<=ab+c_reg;
end
endmodule

o 0O oL

e Instantiating a pipeline of two steps

o Step 1:add a+b — store the output in ab register. register c to c_reg so that the
data are aligned in the next clock
o Step 2: add ab+c_reg to create the output that is stored in a register

e Two clock cycles, latency of 1 cycle
e Output is registered

V4

Example: HLS adder of three 32 bit numbers

Fixed point integer library

32 bit unsigned integer

<32>& a,
<32>8&D,
<32>& c) {

pipeline II=1 .
interface ap none port=a Clock: 100 MHz

interface ap none port=b

interface ap none port=c a

interface ap ctrl none port= . -
Ab=a+b; L ; Adder logic b ———r

d = ab+c; C

Combinational logic: compiler knows FPGA can do it in
e C is written with fixed point 1 clock, latency of 0 cycles

numbers Clock: 500 MHz
e No specification of register

stages a C>‘+
o only that the design should b— ab |
be pipelined @_‘
e Implementation actually c IS X

depends on the compiler =

that needs target clock Two step pipeline. Latency of 1 cycle The difference
speed with HDL is that it did not register the output.

One can add a compiler directive to do this /
5

Pragma directives.

What do we learn from this trivial example?

module adder(i
input wire clk, > a <

input wire [31:0] a, <32>&b,
input wire [31:0] b, <32>& c) {
input wire [31:0] c, pipeline II=1
output reg [33:0] d interface ap none port=a
); interface ap none port=b
reg [31:0] c_req; interface ap none port=c
reg [32:0] ab; : interface ap ctrl none port=
always @ (posedge clk) begin > ab=a+b; = £
ab<=a+b; > d = ab+c;
C_reg<=c;
d<=ab+c_req;
end
endmodule

e HLS will make “optimal” logic based on the intended performance
o But the developer relies on the compiler. Not much personal freedom
e Not that in HDL the developer needs to keep track of aligning the data in
the pipeline
o Painful in complex designs to keep track of everything
o HLS automatically registers the data when it creates pipelines

V4

e DSP cores are silicon cores in

AMD/Xilinx FPGAs

o Perform fast multiplication and

other operations
m Saves many LUTs that would be
used for multipliers

o Are usually instantiated in HDL with

xilinx internal libraries e

HLS: a+b*c

<16>& a,
<16>&b,
<16>& c) {

HLS pipeline II=1
HLS interface ap none port=a
HLS interface ap none port=b

HLS interface ap none port=c

HLS interface ap ctrl none port=
<32> DBC = Db*cC;
a+bc;

e HLS very effective in configuring
and instantiating DSPs

e DSPs have variable latency
o HLS tunes it

48-Bit Accumulator/Logic Unit

M

HDL (a+b*c)

Lookup tables

<72> Tlookup|

(
a+lookup[addr];

An adder that reads a LUT
and and adds a constant
A LUT of 512x72 bits

instantiated

o In Ultrascale architecture = 1
BRAM

At 100 MHz

o Latency of 1 cycle [to read the
ROM]

At 500 MHz

o Latency of 2 cycles [automatic
register in the output of ROM]

When increasing the width of
more than 72 or if we add

more than 52 entries

o Automatically instantiates
more BRAMSs

HLS pipeline II=1
(wen) {

memory[addr]=data;

{

memory[addr];

e Memory instantiated as global array instantiated outside the
method

e Simple handshake, write and read from memory

e Instantiates 2 BRAMs (true dual port)

e Latency of 1 cycle

Registers (Flip flops)

<64> memory[256];

<h4> indshake(<8>& addr,

HLS array partition variable=memory complete dim=1
HLS pipeline II=1

(wen) {

memory[addr]=data;

{

memory[addr];

e The #pragma command breaks the array into individual registers

e Instead of 2 BRAMs it instantiates 16k Flip-flops

e With this pragma, multiple array entries are accessible at any cycle [since
it is a register] but without it only one (two) entries can be accessed
because it is a BRAM

e From C perspective, the array is defined. Actual implementation depends

on #pragma entries
/

Playing with the pipeline, reusing logic

In Time Multiplexed designs: implement one algorithm core and feed

several chunks of data. As an example let's assume:
6 sets of three 16 bit numbers (a,b,c) are arriving in the system

O

O

For each set we need to calculate a+b*c [with a DSP]

e \We have a fully pipelined option and an option to reuse logic

DSP

DSP

DSP

DSP

DSP

RINIIN IR TN NEY

lolole | lolole | lolele | Blole | lolele | ool |

DSP

|

FF

—
—_—
—_—

FF

FF

FF

FF

FF

TINIINIIRE TN T REY

lolele | lolole | lolele | Blole | lolele | ool |

[

DSP

<

— 1> FF

FF

FF

FF

FF

FF

pelined design

o |

DSP —>

o] 5]

DSP —>

I

HLS pipeline II=1

o] 5]

DSP —>

//put the data in arrays as registers for better C++ code
<33> a[6];

b[6];

C[6];

i[6];

array partition variable=a complete

array partition variable=b complete

array partition variable=c complete

array partition variable=d complete

o] 5]

<
<
<

DSP —>

o] 5]

DSP —>

n.bo;c|
1.b1;c[1
.b2;c[:
n.b3;c|
.b4;c[
n.b5;c

n.co;
.Gl
in.c2;
in.c3;
1.C4;
n.cs;

o] 5]

]
1]
2]
]
]
]

et et bt e b

DSP —>

o]

(i=0;i<6;++i) { Unroll the loop
HLS unroll «— — [like a generate
d[i] = a[i]+b[i]*c[i]; statement]

BRAM DSP FF LUT

Latency of 3 cycles @ 500 MHz:
takes new data every cycle
6 DSPs instantiated

DSP reuse design

o, e Latency of 7 cycles, one DSP
02, sy uiniais e New data every 6 cycles

(& in) {
HLS pipeline IT=6 ~— <—I <—|
the data in arrays as registers for better C++ code e
< 3[6]; a > >
il b—t+—> FF |—> DSP | FF ——>
< [61; C —> >
array partition variable=a complete dim=1 - A A
array partition variable=b complete dim=1 a >
array partition variable=c complete dim=1 — N
array partition variable=d complete dim=1 | D > FF FF
. C —>
(81 ae sl neclel-les, S Allowlonly ~ i i
al2]=in.a2;b[2]=in.b2;c[2]=in.c2; ONE E >
shsiasl el s ' multiplier b —>| FF FF >
:[]=]:;-'_ . R R / _C 4)
_ A A
HLS allocation operation instances=mul limit=1 a >
R —_—
(i=0;1i<6;++1) { — —>| FF FF
HLS pipeline II=1 «—— C —_—
dlil = alil+b[il*c[i]; Pipeline the — A A
loo 2 >
P ‘B—+—>| FF FF —
..q0=ci[3 c >
.dl=d[1]; — A A
.d2=d[2]; — -
.d3=d[3]; | a >
.d4=d{ }; — FF FF —
.d5=d - —
BRAM DSP FF LUT URAM | C >

[
[

out; 0 1 539 366 0

Comparison of the code

{
<16> ao; <16> bO; <16> c0;
<16> al; <16> bl; <16> cl; bl;
<16> a2; <16> b2; <16> C2; b2;
<16> a3; <16> b3; <16> c3; b3;
<16> a4; <16> b4; <16> c4; b4;
<16> a5; <16> b5; <16> C5; b5;
} -
(& in) { (& in) {
| | HLS pipeline II=6
| HLS pipeline II=1 //put tne oat? ?n arrays as registers for better C++ code
<33> a .
//put the data in arrays as registers for better C++ code <33> b[6];
<33> a[6]; e
: : ‘{ %j HLS array partition variable=a complete
R ; HLS array partition variable=b complete
<33> d[6]; o , , HLS array partition variable=c complete
HLS array partition variable=a complete dim=1 HLS array partition variable=d complete
HLS array partition variable=b complete dim=1 .
HLS array partition variable=c complete dim=1 - in.a0;b[0]=in.b0;c[0]=in.cO;
HLS array partition variable=d complete dim=1 a[1]=in.al;b[1]=in.bl;c[1]=in.cl;
=in.a2;b[2]=in.b2;c[2]=in.c2;
a[0]=in.ab;b[0]=in.b0O;c[0]=in.cO; E =in.a3;b[3]=in.b3;c[3]=in.c3;
a[l]l=in.al;b[1]=in.bl;c[1]=in.cl; al[4]=in.a4;b[4]=in.b4;:c[4]=in.c4;
a[2]=in.a2;b[2]=in.b2;c[2]=in.c2; =in.a5;b[5]=in.b5;c[5]=in.c5;
a[3]=in.a3;b[3]=in.b3;c[3]=in.c3;
a[4]=in.a4;b[4]=in.b4;c[4]=in.c4; HLS allocation operation instances=mul limit=1
a[5]=in.a5;b[5]=in.b5;c[5]=in.c5;
i=0:i<h:4++1) {
HLS pipeline II=1
(i=R:i<h:++i) { dli] = al1]+b[1]*c[1]
HLS unroll
d[i] = a[i]+b[1i]*c[1]; b
} .do=d[
.d1=d[1
& .d2=d[
out.de=d[0]; ut.d3=d[
out.dl=d[1]; ut.dd=d[
out.d2=d[2]; ut.ds=d[
out.d3=d[3];
out.d4=d[4];
out.d5=d[5]; out;

Pitfall. What did the compiler really build?

e \We did not specify anything in the code to force a shift register...

O

e |n fact the design was implemented with muxes

We could have “helped” the compiler by mimicking the array manipulations in C

FF

FF

FF

FF

FF

FF

lololy | Blele | Bloly | Bloly | Blale | Blels]
TINIINIIRE TN T REY

e Does it matter?

O

Sometimes it does because in large designs the routing congestion could get

-

v VY

implementation to fail..

DSP

>

FF

FF

FF

FF

FF

FF

the
/

What have we learned from the small examples?

e HLS provides the capability to instantiate complex firmware using simple C
code + a set of #pragma directives

e HLS tunes the code based on the target clock speed by adding register
stages and tuning the internal pipelines of silicon modules [DSPs, BRAMSs]

e In complex mathematical operations, the designer focuses on the
algorithm and the alignment of data within long pipelines is done by the
HLS compiler

o IMO, the biggest advantage of this approach

e HLS can be configured to manage the data in a smarter way (e.g reuse

logic) but the user has to think and check what is the supporting logic that

IS instantiated by the compiler

o E.g shift registers vs muxes.
o Part of the C code can be rewritten to mimic HDL, forcing the data management
firmware to what the user wants

e My personal preference is to perform the data management in HDL and
connect it with firmware HLS core that implements the computationally
/

intensive algorithms

Real-world designs from CMS

Comparison of HDL vs HLS: OMTF

e \ery similar performance for both approaches

In the context of HLS evaluation we implemented the full version of the

CMS Overlap Muon Track Finder (OMTF) firmware in both HDL and HLS

o OMTF performs muon reconstruction in the L1 trigger of CMS

Virtex 7 FPGA
Design Slice Sllge F7 F8 : Lur Bleck
Regis- Slices as LUT as RAM
method LUTs Muxes Muxes . :
ters Logic Memory Tile
437 33 39312 17064 360
HLS 123964 | 112240 A X $ 106900 i \
(28.6%) | (12.9%) (0.2%) | (0.03%) | (36.3%) (24.7%) (9.8%) (24.49%)
92845 272 39 40607 5886 360
HDL 114791 108905
. °O - °O . oO 7. oO .400 244 oO
(26.5%) (10.7%) | (0.13%) | (0.04%) | (87.5%) (25.1%) (3.4%) (9%)

e Proof that one does not have to pay a big price in FPGA resources to gain

from the HLS approach

Ve

An approximate Kalman Filter in CMS Run-2 (I/11)

e CMS Barrel Muon Track
finder upgrade for Run-3

e Muon tracking at FPGAs

o Used to be lookup table
based

e New approaches: Real
trajectory reconstruction
with approximate Kalman
Filter

o Propagation of
parameters
o Fitting

Key:

= = === Photon

TWEPP 2018(!)

I I 1 I I 1 I I
(m 2m Im 4m sm 7m

Muon

Electron

Charged Hadron (e.g. Pion)
Neutral Hadron (e.g. Neutron)
Pho

“ ' Propagate

®
4T Z
&\%» ’
) =
‘ []3
Silicon
Tracker 5L
Electromagnetic

Update

1
\

/Initial

-
‘
=
=
=
BN

G

Vertex Constrained
Measurement

Vertex Unconstrained
Measurement

multiple -
scattering

e Requires many

calculations
o Exploit DSP cores

il O O] ey

-) position error
= PHTIS
DO O K K \" matrix inversiol
(o | ? ¢
©® O

S o
E:)(n + Kj <alman Gain

&

An approximate Kalman Filter in CMS Run-2 (lI/II)

e New Kalman Filter version written in HLS
e |nstantiated into the same FPGA

(together with the nominal algorithm)
o Took data in parallel

e |t did fit the latency of about 250 ns!
e Nominal algorithm since the beginning of
Run-3

o First HLS running firmware in data taking

LUT
LUTRAM 12
FF - 24
BRAM
DSP
10
GT-
BUFG
MMCM - 15

0 25 50
Utilization (%)

Y
S
=

.

B Kalman-BMTF
2 BMTF
Infrastructure

T

=0
e

S ' |I I[o =
T
‘ " - o
L +

i

A gain of HLS: Faster data vs emulator agreement

CMS Preliminary, 2018 Cosmic Data

CMS Preliminary, 2018 Cosmic Data
8 F :
(Y] ‘
2 —emul s vE
- emu T 5 —emul
§ 10 data g
10° H —— H
S 105 S H --data
- H o 10
] [= H
2 .l 5
E UH g
> t 10°H
Z 3
104
:: 105
1§ i n
TR L I
@ V1155 w 115B
3 uE ig ‘:':5
S 1.05E S 105
et creas o semn B L covin:myoncommons eSS NS U SRS o
0,955 0.955-
09E- 09E
085F- 0.85E-
“ T q00 200 300 400 '50'ic1> S . . T T TR
P; displaced p#‘

e Firmware emulation — very important for HEP experiments
e With HLS we can load the C fixed point libraries in our emulation code and

make the firmware and software agree much faster
o Usually took years !
e Example: Kalman Filter Muon Track Finder was at 100% agreement

already at the beginning of Run-3

Vs

Another usage: Real Time Machine Learning - HLS4ML

1804.06913

e Fast deep neural networks in FPGAs with HLS

HLS4ML

Keras

|
|
/\ TensorFlow |
PyTorch |
|
1+ hls 4 ml
|
compressed [
model HLS, —_—
conversion Custom firmware
design

Usual machine learning

|
software workfow | Jf
|

tune configuration
' —————————————— precision
reuse /pipeline

Machine learning training

software o
e Translate output of ML training tools to HLS code

o With fixed point precision
o Prune nodes that do not have a major impact

e Optimize the design by reusing logic and picking the speed
o With HLS, reuse logic for very big networks

e Feed IP core into the FPGA

Co-processing kernel

https://fastmachinelearning.org/hls4ml/index.html
https://arxiv.org/abs/1804.06913

Example from HLS4ML.: reusing logic

1804.06913
1e3 his4ml 3-layer pruned, Kintex Ultrascale
—#— Reuse Factor=1
6 1 =
Reuse Factor = 2 Max DSP
b = _REUSE-FACLOr = 3 == o o o o o o o o o o o o o o o e e o
. —#— Reuse Factor =4
—m— Reuse Factor =5
—#— Reuse Factor = 6
4 -
a.
a
3 -
2 -
1 -
S
o T T 1 T T
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision

e Using the HLS reuse logic allows to sacrifice throughput for resources
o But without having to recode the firmware !

Ve

https://arxiv.org/abs/1804.06913

The Phase-2 CMS Trigger

e HLS thoroughly used in the CMS Trigger Upgrade for HL-LHC

e Allowed us to train students and postdocs in firmware developments so
that they can provide algorithm cores in the final system

e Allowed to have the same developer for firmware and emulator in the
experiment software

e Engineering effort focused on infrastructure and of course putting
things together

*«t

I egwmze

Stacked Silicon Interconnect + HLS

o
e

[l
3

v
N .
(3]

S

e Modern devices split in different regions (SLRs)
e Some limitations in crossing between them

e Standard HLS modules do not nominally cross
o There are some tools that do
e This suggests splitting the design with several small HLS modules

e And use HDL “glue” to connect them together
e Also improves compilation time - HLS compiler is slow!
/

Summary of findings and Methodology

HLS algorithm + HDL data management+glue

Link In Link In Link Out
Deserialization Deserialization Serialization
(HDL) (HDL) (HDL)

N\

SLR
Crossing (HDL)

Algorithm
(HLS)

FIFOs
(HDL)

SLR
Crossing (HDL)

SLR
Crossing (HDL)

Algorithm
(HLS)

Algorithm
(HLS)

FPGA

e Optimal results obtained by both HLS cores and HDL
e Algorithms — HLS
e Data management, SLR crossing etc — HDL

Proposed guidelines for algorithm development in HLS

e Many small designs more optimal than a very big one
o Compiler much more efficient
e Two stages of simulation

o Simulation of C code — Check fixed point precision and algorithm output
m Also compiles C with GCC and checks if the C code is correct

o C/RTL co-simulation — Verify that the compiler did the right thing

m Almost always true except in very aggressive complex designs
o Simulate the IP core with the rest of the HDL code (e.g in AMD/Xilinx Vivado)
e Pipelining and logic reuse
o My preference — fully pipelined HLS cores + logic to feed data in HDL
o Compiler is very effective with fully pipelined designs and you avoid the pitfall of
muxes Vs shift registers etc
e [f the compiler takes many hours, something is going wrong

o Memory intensive!

o Sometimes it happens in correct designs
m Compiler is a black box

e High Level Synthesis is becoming the new norm not only in particle
physics but also in the industry

o The Al revolution and FPGA acceleration of software routines have pushed
companies to deliver efficient and powerful tools
e In designs present in particle physics experiments where often custom link

protocols deliver the data a combination of HDL and HLS is optimal
o Data management with HDL, Algorithms in HLS avoids common pitfalls
e Independently of the technical gains, there is the human factor
o HLS is the first step to train a non-expert in FPGA firmware

o Non-experts can become exports in HLS and deliver complex designs
o Eventually they also learn HDL (!)

