TWEPP 2023 – Topical Workshop on Electronics for Particle Physics – 2-6 Oct 2023, Geremeas, Sardinia, Italy

Test and performance of the LiTE-DTU ASIC for the HL-LHC upgrade of the CMS ECAL barrel

Fabio Cossio (INFN Torino) on behalf of the CMS Collaboration

Introduction

INFN

Istituto Nazionale di Fisica Nucleare

The CMS Electromagnetic CALorimeter (ECAL)

Compact, homogeneous and hermetic high-granularity crystal e.m. calorimeter based on scintillating crystals

- 61.2k (Barrel) + ~14.6k (Endcaps) **PbWO₄ crystals**
- $t_{75\%} = 25 \text{ ns}, X_0 = 8.9 \text{ mm}, r_M = 2.19 \text{ cm}$ ECAL Barrel

HL-LHC ECAL Upgrade

- Design luminosity: 5–7.5 x 10³⁴cm⁻²s⁻¹
- High pileup: 140–200 p-p interactions in a single Bunch Crossing
- x10 design integrated luminosity Radiation-induced detector ageing affects

- APD sensors readout
- 36 supermodules, 1700 crystals each
- 2448 readout units, made of **5x5 crystals**
- 5 VFE cards/unit, 5 channels/VFE
- Multi Gain PreAmplifier (MPGA) x1, x6, x12 gain, CSA + 40ns RC-CR shaper
- 12-bit, 40 MS/s ADC, dynamic range 40MeV 1.5TeV

LEGACY ELECTRONICS

- crystal transparency and APD dark current
- ECAL Endcap and Preshower: replace with a completely new detector (HGCAL)
- ECAL Barrel: reduce operating temperature from 18°C to 9°C to mitigate APD leakage current and increase light yield (keep crystals and APDs)

ECAL Barrel Electronics Upgrade

New CMS trigger and DAQ requirements:

- L1 trigger latency: 4.5µs → 12.5µs
- L1 trigger rate: $100 \text{kHz} \rightarrow 750 \text{kHz}$
- Trigger granularity: 5x5 crystals \rightarrow one crystal APDs signals amplified by **CATIA** ASIC:
- 130 nm CMOS technology (CEA Saclay)
- RCG input stage \rightarrow very low Z_{in}, 35 MHz BW
- Dual gain: 10x and 1x \rightarrow 50 MeV 2 TeV dynamic range
- Test pulse injection for gain and linearity calibration
- Output differential buffers with pedestal control

- Trigger-less front-end: trigger primitives generated in the **BCP**
- Faster FE electronics provides:
- ☺ Lower APD noise from leakage current
- Precision time measurement (30 ps resolution for H → γγ photons) for improved primary vertex identification and reduced pile-up
- ☺ Better rejection of "spikes" (signals from direct ionization of APDs) → on the fly pulse shape discrimination

LiTE-DTU: Lisboa and Torino ECAL Data Transmission Unit

lossless data compression and transmission

2x 12-bit, 160 MS/s ADCs

- IP block from commercial company
- Time-interleaved 80 MHz SAR ADC
- ENOB: 10.2 @ 50 MHz
- P < 20 mW per ADC

Lossless data compression

- $E < 2.5 \text{ GeV} \rightarrow 6\text{-bit output}$
- E > 2.5 GeV → 13-bit output (P < 5.8 · 10⁻⁵)

Functional test setup

- Setup developed at INFN Torino towards automation for mass testing
- ZIF socket
- 553 pre-production version chips tested -> yield: 97%

ENOB measurements

Radiation hardness tests

TID tolerance tested up to 50 kGy at INFN Padova X-ray irradiation facility

- BW occupation: 2.08 Gb/s \rightarrow 1.08 Gb/s
- Fit in one lpGBT e-link (1.28 Gb/s)
- Latency < 350 ns

1.28 GHz clock for ADCs and serializers

- Generated internally from 160 MHz input clock
- PLL IP block from lpGBT

65 nm CMOS technology, QFN72 package

mm

Data path SEU cross section

Current status and future perspectives

- Successful beam test campaign at CERN H4 in Jul 2023: supermodule with 200 channels of pre-production FE electronics + first version of the BCP (see *M. Campana's poster*)
- ASIC mass production started in May 2023, first wafers delivered this week
- Full installation during LHC Long Shutdown 3 (2024-2026)

References

[1] TDR: The Phase-2 Upgrade of the CMS Barrel Calorimeters, CERN, Geneva, Sept 2017, <u>https://cds.cern.ch/record/2283187</u>
[2] G. Mazza et al., "The LiTE-DTU: A Data Conversion and Compression ASIC for the Readout of the CMS Electromagnetic Calorimeter", in *IEEE Transactions on Nuclear Science*, vol. 70, no. 6, pp. 1215–1222, June 2023, doi: <u>10.1109/TNS.2023.3274930</u>