

BigRock, a Fast Timing Front End for Future Pixels in a 28 nm CMOS Process

Amanda Krieger, Kennedy Caisley, Maurice Garcia-Sciveres, Carl Grace and Timon Heim

Lawrence Berkeley National Laboratory, Berkeley, CA (USA)

Summary

- Future tracking detectors for HEP will require both high time resolution and low power operation for 4D tracking at higher luminosity
- The higher bandwidth and increased density offered by smaller CMOS nodes is more suitable to enable enhanced pixel performance
- Smaller feature processes have lower process voltage, making current-mode design implementations attractive due to lower voltage swing
- Current-mode schemes also allow lower complexity of design implementations due to intrinsic gain scaling by transistor width selection
- In-silicon test results are not yet available, simulation results are covered herein

BigRock Analog Front End (AFE)

- The CSA topology follows the design described in ref. 1
- The BW of this design is not sufficient track the detector current pulse like a true TIA, as in 1
- However, the result is a very fast pulse peaking time (3-10 ns) that is optimal for low jitter
- The signal current presented to the current comparator is multiplied by ratio "n", where "n" is
- **BigRock CSA** The CSA is a typical regulated cascode design **Function** Note • The input current pulse (charge) is mirrored CSA bias Speed/power vbp tia forward to the current comparator as the signal CSA follower bias vbn tia • The mirror factor is determined by ratio of vaf, vff CSA current g

Essential requirements for a future pixel AFE

- μ -power preamp, ~ 50 ps timing resolution Time of Arrival (ToA)
- Charge readout for time walk correction \rightarrow equivalent resolution ToT
- Target same sensor specification as HL-LHC
- Target same power and dimension as HL-LHC at higher logic density
- Digital: μ -power TDC, < 50 ps resolution (in-pixel TDC for next tapeout)

Example of noise

transient result for ToA

• The 3 ke leading

extracted from

noise transient

the jitter (54 ps

• Threshold tuning

algorithm

Eldo script

as minimum

injection

detectable pulse

present at 1.2 ke

precision of 2 mV

RMS)

simulations

• The S.D of the

Essential requirements for AFE characterization

- On-chip testbench—TDCs (< 10 ps RMS) record ToA and ToT (~20 ns)
- Injection ckt—on the order hundreds e to 10 ke+
- Several channels, with some allowing buffered test points—TP above
- 1 GHz fast clock input for synchronous TDC & injection—LVDS receiver
- High speed test points buffered out—CML driver, analog buffer pads
- Core-voltage-only implementation for TID tolerance to 1 Grad+

	Noise Transient Sim	ulation
ember 9, 2021	/ 12:57:42 PM	
80.0 m	x50 Noise Tran sim at 1.2 ke global three	s hold
40.0m		n an
യറംം —] സറംം —]	Voltage signal at the OTA output	

BigRock Lavout—1st tapeout

channel

BigRock prototype

- 32 "channels" on 90 um pitch (pre-shrink) • 16 channels per side

ToA Edge Distribution—"jitter"

Example Signal Chain		channel			
• A 1 2 ke at-threshold		channel			
tuning nulse is		channel			
followed by a 3 ke		channel			
charge injection to		channel			
represent a central		channel			
charge deposition		channel			
	•	channel	ANAL OG	ΡΑΠ	RING
		channel	DIGITAE	ip,A	RING

• 1 AFE per channel with calibration charge injection ckt

- 2 TDCs per channel—1 Start, 1 Stop
- All pads on 90 um pitch
- CLK receiver—LVDS
- CLKOUT monitor—CML driver
- 2 analog channels with buffered test points
- Preamp TP output—source follower, 2 pF drive capability
- Analog Hit output—source follower, 2 pF drive capability
- ToT pulse—CML
- 1 channels is connected to an input pad (300 fF)
- 0/25fF/50fF/100fF loading array for characterization (2nd tapeout)

BigRock Injection Ckt: 4 bits MoM cap + variable Vinj on base cell **BigRock TDCs**

- INJ and TDC START are triggered by first 1 GHz CLOCK after PRIME
- TDCs count the number of 1 GHz clocks (up to 63), and ...
- 1 GHz clock re-triggers a 128-stage delay line each period
- HIT rising edge from AFE stops the RISING EDGE TDC
- HIT falling edge from AFE stops FALLING EDGE TDC
- Each TDC output is
 - Number of clocks (6 bits), plus ...
 - 128 delay line taps (find 1-0 transition for fine time resolution)

ToT for Various Charge Injections

- **Example of ToT vs. input** charge
 - Allows extraction of timewalk and ToT linearity

/0E-0/					
65E-07	•				
60E-07					
55E-07	•				
50E-07					
45E-07	•				
40E-07					
35E-07					
30E-07		•	•		•

ToA vs. Qin

ToT vs. Qin

5.00E-08				
1 50E-08				
4.JUL-00				
100E-08				
00L-00				

Mismatch Simulation

Functional Simulation of Full Test Channel

Injection sequence for a channel

- A channel is one AFE pixel, plus two TDCs
- An enable signal, PRIME, allows a synchronous trigger of both the injection circuit and the rising and falling edge TDCs
- The edges are recorded by the TDCs with ~ 5 ps resolution, for a period of up to 63 ns
- The two frozen counter values are read out serially