Development and performance of a pixel chip for the readout of GEM detectors for high-rate particle tracking

Hulin Wang, Jun Liu and Chaosong Gao (Central China Normal University) Zhen Wang (Guizhou Normal University) On behalf of the CEE beam monitor group

Abstract: We report the R&D program underway at CCNU to develop a pixel chip for the readout of GEM detectors appropriate for use in the CSR external-target experiment (CEE) at HIRFL for beam monitoring. The chip offers simultaneous Time over Threshold (ToT) and Time of Arrival (ToA) measurements, with an event-driven readout mode. The chips were tested with injected pulses, α particles from ²⁴¹Am, and a Fe-ion beam of 350 MeV/u, coupled with single GEM. The position resolution, rate capability and reconstruction efficiency for the beam particles were characterized.

CEE at HIFRL-CSR		Beam Monitor of CEE	
Heavy Ion Research Facility in Lanzhou Cooler-Storage-Ring system	 CSR External-Target Experiment Study the properties of cold nuclear matter at high baryonic density Construction time: 2020-01 to 2024-12 Lowest (highest) beam energy: 0.3 (2.8) GeV/u Maximum system: U+U Maximum event rate: 10⁴ s⁻¹ 		 Placed upstream of the fixed target Measure the position of each beam particle Used in vertex reconstruction (combined with TPC and MWDC) Main design parameters: Position resolution : 50 μm Minimum time separation of two particles: 1 μs
L Low Energy	ZDC		• Sonsitivo aroa: 30×30 mm ²

- Two field cages in a gas vessel, each measuring 1-D transverse coordinate
- Custom-designed Topmetal chip as anode for charge sensing and readout
- Direct charge sensing for heavy ionizing particles e.g. U
- Single-layer GEM for less ionizing particle e.g. C

Topmetal-CEEv1 chip

<u>NIMA 1047 (2023) 167786</u>

the main features of the Topinetal-CEEVT chip.	
Feature size	130 nm
Chip area	4.2 mm ×19 mm
Number of pixels	1×180
Pixel pitch	100 µm
CCE size	1 mm ×89 μm
Shaping time (tunable)	$\sim 0.5~\mu s$ to 2 ms
Peaking time	$\sim 100 \text{ ns}$
Readout scheme	Data-driven readout
Readout time	25 ns/pixel
Amplitude measurement	TOT method

Tests with injected pulses

Key characteristics of the electronics, including the noise, threshold and gain of the CSA and the ToT output, are assessed by means of injected pulse signals through the guard-ring capacitance.

Tests with Fe-ion beam

Typical event with ΔV_{GEM} = 450 V (top), 350 V (bottom),

threshold of about 28k e^- , in a gas mixture of Ar(70%)

E_{Drift} = 300 V/cm, E_{Induction} = 1000 V/cm and pixel

+ CO₂(30%).

The photo of the detector. The bonding board is placed The setup of the beam test. The energy of the Fe-ion beam is under single GEM, acting as the anode of the field cage. 350 MeV/u, with the density varying between about 10⁴ to 10⁶ pps.

Tests with ²⁴¹Am α particles

At the time of the beam test, the ToT function was not available in the readout system. The ToT was later tested with ²⁴¹Am α particles.

To T of the pixels in a typical event with ΔV_{GEM} = 475 V, E_{Drift} = 300 V/cm, E_{Induction} = 1000 V/cm and pixel threshold of about 10k e^- . Amplitude 0.1 V = \sim 70k e^{-} .

Residue [100µm]

determined by the

other two columns of

pixels. $\Delta V_{GEM} = 350 \text{ V}.$

For more details, please contact hulin.wang@ccnu.edu.cn

TWEPP-23 : Topical Workshop on Electronics for Particle Physics, Geremeas, Sardinia, Italy, 2 – 6 October 2023