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2. Development setup
● RDMA stands for Remote Direct Memory Access - used for data 

transfers with as little CPU involvement as possible
● several transport services, such as reliable connection, unreliable 

connection etc. The one used here is reliable connection, which it is 
similar to TCP/IP;

● several transport functions, such as send/receive, write and read. The one 
used here is RDMA write;

● up to this point1,2, tested for individual bursts of data
● in a production setting, that is not enough – for meaningful test 

results, several other issues need to be taken into account:
● multiple simultaneous clients and connections
● continuous flow of data
● accounting for consumption of data by clients

● multiple simultaneous clients and connections
● senders implemented both in software and in hardware on Xilinx Alveo 

boards for individual bursts
● continuous flow of data can’t be safely implemented when using 

RDMA write without accounting for consumption of received 
data by clients

● to accomplish it, implemented solution using:
● circular buffer
● flow control

● currently only implemented for software senders
● there are only two receivers, one for individual bursts, and one 

for continuous flow, implemented in software, working for all 
types of senders

1. Design choices
● backpressure mechanism:

● stops transfer when circular buffer occupancy goes 
over threshold and restarts it when occupancy 
goes back down

● upper threshold and lower threshold pair to avoid 
flip-flopping

● out-of-band sender/receiver communication using 
TCP/IP

● sender – 3 threads, 2 of them 
syncronized using a semaphore:
● #1 sends data, posts semaphore
● #2 waits semaphore, sends data 

write notification
● #3 receives backpressure 

commands

● receiver – 2 threads, syncronized using a 
semaphore:
● #1 receives data write notification, posts 

semaphore and activates backpressure
● #2 waits semaphore, reads data and 

deactivates backpressure

4. Continuous flow, multiple connections (software)

5. Multiple connections (hardware)

3. Design consequences
● burst = message size {bytes] x message count 
● tested3 with 8192x100, 8192x1000, 32768x100, 

32768x1000 bursts
● less than 8192b or 100 msgs. – no full bandwidth use

● tested with circular buffer capacities: 10, 100, 1000
● 10 - too small, no matter what other parameters were used, 

there were always capacity overruns

● once buffer occupancy reaches the upper 
backpressure threshold for the first time, the 
transfer mechanism settles in a periodic pattern 
between the upper and the lower thresholds
● only way to prevent it: have a client that can read faster 

than the sender can write

● when the sender is using multiple connections to one 
or multiple clients, the available sender bandwidth will 
be split across all connections
● all connections - same client: bandwidth split equally
● different clients: bandwidth can be split unequally between 

connections ending on different clients

● on the PCs in the development setup, if the sender 
sends data with less than about 5GB/s, the receiver 
will be able to read it fast enough so that 
backpressure is never triggered
● backpressure not triggered → send and receive bandwidths 

are almost equal (i.e. little overhead)
● backpressure triggered → send bandwidth is roughly 

double the receive bandwidth

● all the tests run with 1 sender
● independent flow control on each connection
● 1 connection → 1 client - tested with 8192x100, 

8192x1000, 32768x100, 32768x1000 bursts
● 2 connections → client, 2 connections → 2 clients, 4 

connections → 1 client, 4 connections → 2 clients – 
tested only with 8192x1000 bursts

● tested 2 threshold configurations:
● 90/85 (90% buffer occupancy for upper threshold and 85% 

buffer occupancy for lower threshold)
● 80/75

● no noticeable performance difference
● the only important parameter seems to be the the 

upper threshold so that no capacity overruns happen

● the hardware implementation multiple connections feature was 
initially developed to run individual burst tests
● as a consequence, the independent control of each connection 

was not a priority when this was developed
● continuous flow requires fully independent control for each 

connection - this will be implemented in the future
● tested with message sizes (in bits): 128 to 512M
● tested with message counts: 10, 100, 1000
● two references used:

● the bandwidth reported by the ib_write_bw test from the 
Perftest package (the red dotted line)

● the bandwidth measured running the test with a single 
connection (the solid blue line)

● 10 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● four connections distributed as:
● all four conn. on the same client
● two clients, each with two conn.

● at link saturation, the total send 
bandwidth is higher than the 
single connection setup by:
● 2.41% for 2 connections, 1 client
● 1.76% for 2 connections, 2 clients
● 4.05% for 4 connections, 1 client
● 4.06% for 4 connections, 2 clients

● 100 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● four connections distributed as:
● all four conn. on the same client
● two clients, each with two conn.

● at link saturation, the total send 
bandwidth is higher than the 
single connection setup by:
● 0.23% for 2 connections, 1 client
● 0.22% for 2 connections, 2 clients
● 0.34% for 4 connections, 1 client
● 0.34% for 4 connections, 2 clients

● 1000 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● all four connections test setups 
are currently overloading the 
resources of the FPGA RDMA 
core implementation

● at link saturation, the total send 
bandwidth is lower than the 
single connection setup by:
● 0.31% for 2 connections, 1 client
● 0.31% for 2 connections, 2 clients

● the theoretical maximum 
bandwidth of the used links is 
100Gb/s (i.e. 12.5GB/s)

● a software implementation, 
both ours and what can be 
measured with Perftest, can 
reach up to 10.5GB/s

● our hardware implementation 
has been measured to reach up 
to 11.54GB/s with a single 
connection and up to 11.98GB/s 
total with multiple connections
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3) The code of the software senders and all the receivers can be found at https://github.com/mev/rdmatools
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