

Performance profiling and design choices of an
RDMA implementation using FPGA devices

TWEPP
2023
Oct 1 – 6, 2023

Geremeas, Sardinia, Italy
1IFIN-HH, 2UPB, 3Nikhef

Matei-Eugen Vasile1, Voichita Iancu2, Sorin Martoiu1, Gabriel Stoicea1, Nayib Boukadida3, Radu Hobincu2

2. Development setup
● RDMA stands for Remote Direct Memory Access - used for data

transfers with as little CPU involvement as possible
● several transport services, such as reliable connection, unreliable

connection etc. The one used here is reliable connection, which it is
similar to TCP/IP;

● several transport functions, such as send/receive, write and read. The one
used here is RDMA write;

● up to this point1,2, tested for individual bursts of data
● in a production setting, that is not enough – for meaningful test

results, several other issues need to be taken into account:
● multiple simultaneous clients and connections
● continuous flow of data
● accounting for consumption of data by clients

● multiple simultaneous clients and connections
● senders implemented both in software and in hardware on Xilinx Alveo

boards for individual bursts
● continuous flow of data can’t be safely implemented when using

RDMA write without accounting for consumption of received
data by clients

● to accomplish it, implemented solution using:
● circular buffer
● flow control

● currently only implemented for software senders
● there are only two receivers, one for individual bursts, and one

for continuous flow, implemented in software, working for all
types of senders

1. Design choices
● backpressure mechanism:

● stops transfer when circular buffer occupancy goes
over threshold and restarts it when occupancy
goes back down

● upper threshold and lower threshold pair to avoid
flip-flopping

● out-of-band sender/receiver communication using
TCP/IP

● sender – 3 threads, 2 of them
syncronized using a semaphore:
● #1 sends data, posts semaphore
● #2 waits semaphore, sends data

write notification
● #3 receives backpressure

commands

● receiver – 2 threads, syncronized using a
semaphore:
● #1 receives data write notification, posts

semaphore and activates backpressure
● #2 waits semaphore, reads data and

deactivates backpressure

4. Continuous flow, multiple connections (software)

5. Multiple connections (hardware)

3. Design consequences
● burst = message size {bytes] x message count
● tested3 with 8192x100, 8192x1000, 32768x100,

32768x1000 bursts
● less than 8192b or 100 msgs. – no full bandwidth use

● tested with circular buffer capacities: 10, 100, 1000
● 10 - too small, no matter what other parameters were used,

there were always capacity overruns

● once buffer occupancy reaches the upper
backpressure threshold for the first time, the
transfer mechanism settles in a periodic pattern
between the upper and the lower thresholds
● only way to prevent it: have a client that can read faster

than the sender can write

● when the sender is using multiple connections to one
or multiple clients, the available sender bandwidth will
be split across all connections
● all connections - same client: bandwidth split equally
● different clients: bandwidth can be split unequally between

connections ending on different clients

● on the PCs in the development setup, if the sender
sends data with less than about 5GB/s, the receiver
will be able to read it fast enough so that
backpressure is never triggered
● backpressure not triggered → send and receive bandwidths

are almost equal (i.e. little overhead)
● backpressure triggered → send bandwidth is roughly

double the receive bandwidth

● all the tests run with 1 sender
● independent flow control on each connection
● 1 connection → 1 client - tested with 8192x100,

8192x1000, 32768x100, 32768x1000 bursts
● 2 connections → client, 2 connections → 2 clients, 4

connections → 1 client, 4 connections → 2 clients –
tested only with 8192x1000 bursts

● tested 2 threshold configurations:
● 90/85 (90% buffer occupancy for upper threshold and 85%

buffer occupancy for lower threshold)
● 80/75

● no noticeable performance difference
● the only important parameter seems to be the the

upper threshold so that no capacity overruns happen

● the hardware implementation multiple connections feature was
initially developed to run individual burst tests
● as a consequence, the independent control of each connection

was not a priority when this was developed
● continuous flow requires fully independent control for each

connection - this will be implemented in the future
● tested with message sizes (in bits): 128 to 512M
● tested with message counts: 10, 100, 1000
● two references used:

● the bandwidth reported by the ib_write_bw test from the
Perftest package (the red dotted line)

● the bandwidth measured running the test with a single
connection (the solid blue line)

● 10 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● four connections distributed as:
● all four conn. on the same client
● two clients, each with two conn.

● at link saturation, the total send
bandwidth is higher than the
single connection setup by:
● 2.41% for 2 connections, 1 client
● 1.76% for 2 connections, 2 clients
● 4.05% for 4 connections, 1 client
● 4.06% for 4 connections, 2 clients

● 100 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● four connections distributed as:
● all four conn. on the same client
● two clients, each with two conn.

● at link saturation, the total send
bandwidth is higher than the
single connection setup by:
● 0.23% for 2 connections, 1 client
● 0.22% for 2 connections, 2 clients
● 0.34% for 4 connections, 1 client
● 0.34% for 4 connections, 2 clients

● 1000 msg. count, tested with:
● two connections distributed as:

● both conn. on the same client
● two clients, each with a single conn.

● all four connections test setups
are currently overloading the
resources of the FPGA RDMA
core implementation

● at link saturation, the total send
bandwidth is lower than the
single connection setup by:
● 0.31% for 2 connections, 1 client
● 0.31% for 2 connections, 2 clients

● the theoretical maximum
bandwidth of the used links is
100Gb/s (i.e. 12.5GB/s)

● a software implementation,
both ours and what can be
measured with Perftest, can
reach up to 10.5GB/s

● our hardware implementation
has been measured to reach up
to 11.54GB/s with a single
connection and up to 11.98GB/s
total with multiple connections

1) M. Vasile et. al FPGA implementation of
RDMA for ATLAS readout with FELIX at
high luminosity LHC, JINST, vol. 17, May
2022

2) M. Vasile et. al Integration of FPGA RDMA
into the ATLAS readout with FELIX in High
Luminosity LHC, JINST, vol. 18, Jan 2023

3) The code of the software senders and all the receivers can be found at https://github.com/mev/rdmatools

	Slide 1

