An open-sorce IP-Core for Multi-Voltage Thresholding signal acquisition with FPGAs

<u>Dmitry Eliseev, Erik Ehlert, Thomas Hebbeker, Markus Merschmeyer, Carsten Presser,</u> **RWTH Aachen University, III.** Physics Institute A

Motivation and Introduction

High-speed multichannel ADCs are costly and require complex FPGA firmware to communicate with. The Multi-Voltage Thresholding (MVT) approach [1] offers an alternative to a high-speed multichannel ADC by harnessing the internal resources of an FPGA, reducing complexity and costs. We introduce an open-source IP-Core that simplifies use of the MVT method with a conventional FPGA. We also provide an overview of characterization measurements and specific calibration methods. Our example application demonstrates usage of the IP-Core for signal acquisition from multiple Silicon Photo-Multipliers (SiPMs) with the sampling rate of 800 MSPS.

MVT Concept basics

The Multi-Voltage Thresholding (MVT) follows the same principles as Flash-ADCs. It involves a voltage ladder for reference, comparators for input comparison, and a digital encoding circuit. A significant advantage of this approach is its rapid digitization capability. However, it has a drawback: achieving A triangle-pulse higher resolution requires a substantial number of V_{th} with exactly known comparators. width and amplitude Modern FPGAs feature differential receivers for Low-Voltage V₀--Differential Signaling (LVDS) inputs which in their core contain comparators. These comparators can be utilized for **Synchronization** MVT [1,2]. The voltage references can be generated by slow pulse and inexpensive multi-channel DACs.

FPGA intrinsic biases and calibration procedure

The intrinsic bias of FPGA input comparators can reach up to ±35mV [3]. It is important that the reference voltages provided for the comparators compensate the individual bias voltage of the respective comparator. A simple method for measuring the bias of a particular comparator is applying a triangle pulse with exactly know characteristics (length and amplitude).

Fig. 1: Implementing the MVT concept within an FPGA

Depending on the reference voltage level, the comparators have different transition- and on-times, which are registered by the proposed IP-Core.

 Δt_{th1} and Δt_{th2} are time-shifts with respect to the times when an ideal comparator would have switched on rising- and falling edges respectively. From the time-shifts the bias voltages ΔV_{re} and ΔV_{fe} are calculated. Repeating this procedure many times and plotting each calculated point results in a comparator's characteristic distribution (see Fig. 3).

Calibration procedure After applying the compensation pedestal voltages for every comparator's reference, repeating the calibration procedure results in near-zero bias shift for all four channels.

[mV]

 ΔV_{fe}

MVT Quad IP-Core

The IP-Core is equipped with four sampling inputs and therefore is referred to as an MVT-Quad. Each input comparator is followed by a deserializer responsible for Time-to-Digital Conversion (TDC). Deserializers operate in a fast clock domain (in our example application System clock domain Fast clock 800 MHz) and therefore capturing domain the signal transitions with high time-Vref3 resolution. Resulting TDC values come to the Data-Packager.

The

faces:

Output data format

AXI-Stream data transmission is initiated whenever one or more comparators switch. Having at least

	Outpu	ut data	format	1
	u u			
r -			, , , , , , , , , , , , , , , , , , ,	
P-Cor	e fea	atures	two	inte
AXI-S	tream	and F	AXI-LI	e. Ir
ream	interf	are o	stream	
Cam	mitteri		Sucan	5 0

AXI-St the TDC values of signal transitions. AXI-Lite interface is dedicated for interfacing internal configuration registers.

The MVT-Quad IP-Core is an open-source project distributed under CC BY-SA 4.0 license. The project is evolving at <u>http://git.rwth-aachen.de/muon-hodoscope/mvt_quad_ip</u>

FPGA resources utilization

The below tables give an overview of the resources utilization of an FPGA for instantiating one MVT Quad IP-Core. Naturally, the IP-Core fully

1. CLB Logic - - - - - - - - - - - - -

----+----+ Site Type Used -+----213 213 CLB LUTs* LUT as Logic LUT as Memory 0 397 CLB Registers

utilizes the I/O infrastructure of four differential inputs. With it, the usage of resources on data packaging tasks and organizing interfaces is quite

Example application

The MVT Quad IP Core was tested with help of a specifically developed FPGA Mezzanine Card (FMC). It provides the electronic base for eight analog inputs. Each analog input is equipped with a 4-channel 10-bit DAC (LTC2635), providing four reference voltages for the respective MVT Quad IP-Core. DAC values are loaded via the common I2C bus as shown in Fig. 8. The developed MVT FMC module is a

part of a test-setup (see Fig. 9).

8-Channel Multi-Voltage-Threshold (MVT) Mezzanine Board

one valid TDC-value from one comparator, the Data-Packager prepares a 32-bit wide word which is streamed out via AXI-Stream master interface. This 32-bit word can contain the information on up to two transitions (rising- and falling- edges) which took place within one period of the system clock for every of the four comparators. The AXI-Stream data transmission starts with a 32-bit word which carries the value of the system-clock counter register, serving as a raw time-reference. All the subsequent 32-bit payload words contain addendums from the high-speed clock domain.

set to "1". If no transitions are registered on any of the MVT Quad comparators within one period of the system clock, the AXI-Stream transmission is ended

Along with the MVT FMC module, the test-setup includes Cosmic Muon the TE0820 System-on-Module (SoM) having the Zynq scintillating stripes Ultrascale+ chip in its core and the carrier module TE0701. Both SoM and carrier module are from Trenz Electronic GmbH [4]. The setup was tested with the sampling rate of 800 MSPS for acquiring output pulses from SiPM-based frontends, used in a stripe-hodoscope shown in Fig. 10. SiPM based frontend Fig. 10: SiPM-based hodoscope with scintillating stripes w. amplifier Structure of MVT FMC

Register as Flip F Register as Latch CARRY8 F7 Muxes F8 Muxes F9 Muxes	lop 397 0 12 0 0 0	modes import IP-Cor	st. ant 'e e'	It's to note tl volves co	how hat as ntinuc	vever s the ously,
4 T/O		the ex	tent	of resour	ce ut	iliza-
		8. Primitives		tion ma	ay unc	iergo
++ Site Type Used		·····	.		char	nges.
Bonded IOB 8		Ref Name +	Used	Functional Cat	egory +	
5. CLOCK		FDRE LUT2 LUT6 LUT3 LUT4	392 103 76 41 37	Reg	ister CLB CLB CLB CLB	
Site Type U	Jsed	LUT5	20 12		CLB CLB	
GLOBAL CLOCK BUFFERs BUFGCE BUFGCE_DIV BUFG_PS BUFGCTRL*	1 0 1 0 0	FDSE LUT1 ISERDESE3 IBUFCTRL	5 4 4 4	Reg. O [.]	ister CLB I/O thers	
PLL MMCM	0 0	BUFGCE_DIV	4		I/U Clock	

The stripe-hodoscope is able to detect cosmic muons with a spatial resolution of ~2.5 cm. The scintillation light is detected by MicroFJ-30035 SiPMs, housed within a frontend circuit.

References

I] Xi, Daoming, et al. "FPGA-Only MVT digitizer for TOF PET." IEEE Transactions on Nuclear Science 60.5 (2013): 3253-3261 2] Moskal, Paweł, et al. "A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET)." Bio-Algorithms and Med-Systems 10.1 (2014): 41-45 3] UltraScale Architecture SelectIO Resources, Datasheet UG571 v1.14. (2022): 33 4] Website Trenz Electronic GmbH: https://www.trenz-electronic.de/en/

+----+

Corresponding Author: Dmitry Eliseev (Dr.-Ing.) III. Physics Institute A, RWTH Aachen University eliseev@physik.rwth-aachen.de

+----+

TWEPP 2023 Topical Workshop on **Electronics for Particle** Physics

Federal Ministry of Education and Research

 $[\]Delta V_{re} \ [mV]$ Fig. 5: Bias characterization measurement with four compaators after applying compensation pedestal