TWEPP 2023

Topical Workshop on Electronics for Particle Physics GEREMEAS (CA) – 2023/10/06

Front-End Board for Large Area SiPM Detector

A. Fabbri, <u>C. Venettacci</u>, F. Petrucci, S. Loffredo, S.M. Mari on behalf of the JUNO collaboration

Outline

- JUNO-TAO Experiment
- Silicon Photo-Multipliers
- Read-Out Electronics
- Experimental setup & instruments
- Figures of merit & characterization
- Conclusions

JUNO-TAO Experiment

- The Taishan Antineutrino Observatory (TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO), located in the southern China, expected to start collecting data in 2024.
- TAO consists of a spherical ton-level Gadolinium-doped Liquid Scintillator (Gd-LS) detector (1.8 m diameter) at ~30 m from a reactor core of the Taishan Nuclear Power Plant (4.6 GW) in Guangdong.
- By means of 10 m² SiPM covering the spherical LS, the reactor antineutrino spectrum will be measured with a sub-percent energy resolution (≤ 2% / √E MeV).

MOTIVATION

- Provide a model-independent reference spectrum for the JUNO neutrino masshierarchy measurement.
- Provide a new benchmark measurement to test nuclear databases.
- ✓ Reactor monitoring: status/fuel.

JUNO-TAO Central Detector

CENTRAL DETECTOR (CD)

- Acrylic Sphere (d=1.8m, 20mm-thick) filled with 2.8t Gd-LS
- Copper Shell (d=1.886m, 12mm-thick) with SiPM tiles support
- SS Tank (d=2.09m, 10mm-thick) filled with 3.2t LAB/Gd-LAB
- Cryogenic System, at -50°C to reduce thermal noise
- Front-End Electronics (FEE)
- The central detector operates at -50°C, inside a cryostat, to lower the dark/thermal noise of the SiPMs.

Silicon Photo-Multipliers

- □ Each SPAD works in Geiger mode, and it is integrated with its passive quenching resistor.
- The output charge of the SiPM is the sum of all the charges generated by the fired SPADs, and it is proportional to the number of detected photons (Multi-Pixel Photon Counter, MPPC)

SiPM Simplified scheme

Typical acquired waveforms from the tile @ -50°C

4/20

Histogram related to the maximum of each acquisition in a defined time window

Hamamatsu SiPM Tile

- The total area of the TAO sphere is ~10 m², resulting in ~1.3 x 10⁵ SiPMs. For installation and readout considerations, the SiPMs are assembled in ~4000 SiPM tiles of 8x4 SiPMs, with dimensions ~50x50 mm².
- □ In order to reduce the number of channels, multiple SiPMs are combined in one readout channel, with serial/parallel connection.

HAMAMATSU S16088: SiPM TILE

- 12,782 SPADs x SiPM (75 µm pixel pitch)
- 8x4 array of 12x6 mm² SiPMs (5x5 cm²)
- 10 m² / 25 cm² ≈ 4000 SiPM tiles
- Each SiPM tile splitted in 2 readout channels (with series/parallel connections)
- Each tile delivered with its own calibration file
- Gain changes with overvoltage (V_{OP}≈54V @ 25°C)
- Temperature coefficient: +54 mV/°C:

 V_{OP} (@ -50°C) = V_{OP} – (0.054 V x 75)

Electronic readout scheme

* FEB (Front End Board)

inside the cryostat

- ➢ 4024 tiles, 4024 FEBs
- > 2 channels on 1 FEB/tile
- Total 8048 channels
- Analog signals from FEB transferred to FEC via differential pairs, ~ 4 m inside the SS tank, ~14 m outside the tank

- FEC (Front End Controller) outside the cryostat
- > 258 ADC boards --> 66 FECs
- ADC is on FEC, used to digitize analog SiPM signals from the FEBs
- FPGA & Power boards in µTCA.4 crate
- Q/T information is extracted with FPGA (waveform analysis)

Front-End Boards

Planar version with aramid PCB

2 stage amplifier: TransImpedance Amplifier + Differential Driver

The 32 SiPM elements of each tile are splitted in 4 TIAs

Front-End Boards

Planar version with aramid PCB (low background) 2 stage amplifier: TIA + differential driver

FRONT: INPUT + 1st STAGE

REAR: 2nd STAGE + OUTPUT

8/20

• Single p.e. amplitude ≈ 10 mV p.e. channel dynamic range: 1–125 p.e.

• FEB needs ±80 mA at +2.2V and -2.2V @ -50°C >> 0–2V linearity range

• Shaping time \approx 500 ns • Recovery time < 1 µs

SiPM gain adjustment with overvoltage (G≈4x10⁶ @ V_{OP})

Flanges Cabling

□ In order to decrease the number of the cables, and try to simplify the connections, there are 8 flanges with 8 signal pcb boards and 2 power supply pcb boards each.

L≈3m FEB = FEB =

- Each flange have to supply 512 FEBs
- FEBs can be subdivided in ~86 rows with 6 FEBs each
- 86 long pairs (~3m) come from the flange to the first FEB of each FEB rows

9/20

 5 shorter cables (~15cm) can be used to bring supply to the other FEBs on each row

1:1 TAO Prototype

10/20

The TAO detector 1:1 prototype is under construction in Beijing at IHEP (Institute of High Energy Physics)

Test key installation procedures before the transfer to the Taishan Nuclear Power Plant in Guangdong
 The aim is avoiding big issues and save time on site (i.e.: copper shell rotation, SiPM assembly, cabling, tools)
 Test performance of cryogenic system, FEBs with SiPM tiles (~100), LS, calibration system, etc..

Experimental setup

Tile characterization performed @ -50°C (in dark condition or laser source)

CLIMATE CHAMBER

SUPPLY & READOUT

- Low-Voltage power supply
- High-Voltage power supply
- 407nm-80ps LASER source
- LeCroy WavePro Oscilloscope

11/20

6 FEBs + Tiles tested at one time – 12 overall channels

FEBs LV (2V) supply on the row I_{LV-BIAS}~80mA x #_{FEB} @-50°C

High-Voltage power supply (≈100V) splitted for all 6 tiles

FEBs supply & connection

6x 3m output connectors with flange and 14-meter twisted differential pair cable

Inside climate chamber

Outside climate chamber

12/20

Differential signals recombined by means of a transformer (mismatched impedance: $50\Omega_{OUT}$ // $50\Omega_{IN}$ Oscilloscope DC-coupling)

CDR Figures of Merit

Maximum Histogram 4 photoelectrons + pedestal (zero)

- P.E. Channel dynamic range 1 125 p.e. (1–250 p.e. on the whole tile)
- Recovery time < 1 µs
- ✓ $\mu_{k+1} \mu_k \approx 8 \text{ mV} @ V_{OP} = +3 \text{V} \text{ OV}$
- ✓ Shaping time ≈ 500 ns
- p.e. amplitude, SNR, RES adjustments with overvoltage

SiPM Overvoltages

Effects on the SiPM tile for different Over Voltages ($V_{OP} = +3V OV$)

- ✓ Single Electron (S.E.) resolution & Signal-to-Noise Ratio increasing
- Crosstalk increasing
 Dynamic Range decreasing

Tiles Characterization

100 pre-production FEBs tested with pulse electrical source (linearity, gain) and with SiPM tiles, in dark condition and with a very-low intensity laser source (λ =407nm) @ -50°C (RES, SNR, DCR)

0.000 0.005 0.010 0.015 0.020

output (V)

0.025 0.030 0.035 0.040

+ 3V OV F2--FEB51-TILE169-30V--00000.csv F2--FEB51-TILE169-4OV--00001.csv single cable 104 10^{4} data data fit fit ARK SNR = 10.41 SNR = 13.75 10³ 10³ RES = 13.22 % RES = 11.91 % entries/bin entries/bin 10² 10¹ 101 10° 10° -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 output (V) output (V) F2--FEB51-TILE169-4OV--00000.csv F2--FEB51-TILE169-30V--00000.csv single cable single cable data data fit fit SNR = 10.28 SNR = 16.64R 10^{4} 10^{4} RES = 10.62 % RES = 12.89 % ASE 10³ 103 entries/bin 10³ entries/bin 10² 10¹ 10¹ 10° 10⁰

0.025 0.030 0.035 0.040

0.000 0.005 0.010 0.015 0.020

output (V)

 RES, SNR, XTLK: Gaussian fit over maximum histograms

15/20

 DCR: Count of events above a voltage threshold (halfway 0 and 1 p.e.) normalized with 1s and overall area (12x12 mm² x8, halftile). About the same for all FEBs and Tiles, and in datasheet range:

→ ~25 [Hz/mm²] @ +3V OV
 → ~32 [Hz/mm²] @ +4V OV

Typ. 2000 / Max. 6000
(Typ. 13.9 / Max. 41.7)cps/ch.
(cps/mm²) $DCR_{@25^{\circ}C} \approx 4000 \times DCR_{@-50^{\circ}C}$

Characterization summary @ +3V OV

16/20

RES, SNR, DCR and XTLK: expected results as the requirements

ADC Board Prototype

Analog Devices – ADC demo-board

(for preliminary test)

- AD9083EBZ evaluation board
- ADS8-V3EBZ Data Capture Board
- FPGA controller (Kintex7)
- Ethernet connection with PC

All 16 channels readout at one time (6 FEBs connected - only 12/16 active channels)

Acquired data

Reconstructed histogram

ADC Board Prototype

Custom ADC board (7.5 x 7 cm²) with 2 AD9083

32 input differential channel per board, accessible by FMC connector

AD9083

- \sum - Δ analog-to-digital converter (ADC)
- 125 MHz usable analog input bandwidth
- Sample rate up to 2 GSPS
- 16 input channels
- 4 JESD204B Subclass 1 encoded outputs
- Differential input (0.5 to 2 V_{PP})
- Digital processor
- 1.0 V and 1.8 V supply operation

- 250 MSample/s ADC, 125 MHz bandwidth
- 32 channels Differential input 2 V_{PP}
- Dedicated Input for shared clock between different board
- FMC connector for power supply and output signals

ADC Board Prototype

STATUS OF WORKS

- 2 ADC boards arrived last week
- They are currently under test for firmware debugging
- FMC pinout compatible with Analog devices ADC demo board and ADS8-V3EBZ (16 input channels reading at one time)
- Kintex7 FPGA-based Front-End Controller (FEC) has been developed at IHEP
- The FEC can control 4 ADC boards, for a maximum of 128 channels read at one time
- A dedicated trigger & DAQ system will filter and record occurring events, rejecting dark count events

2x ADCFEC BOARDBOARD(IHEP)max 128 channels

2x ADC BOARD

Conclusion

- High resolution measurement of the reactor antineutrino spectrum
- Design of the TAO readout front-end electronics reported
- Preliminary tests demonstrating the fulfillment of the TAO requirements
- Automatic data acquisition by means of ADC boards with FPGA controller
- JUNO-TAO: 1:1 prototype ready at the end of the 2023 and online in 2024
- Ready for the mass-production (waiting feedback from 1:1 prototype test)
- Custom board development for testing ~4000 FEBs (connections and gain)

Thank you for your attention

BACK-UP SLIDES

CD Overview

1/10

JUNO-TAO Central Detector (CD)

COPPER SHELL

CD Overview

2/10

Highlights:

- ▶ Energy resolution <2%@ \checkmark E MeV
- ➢ SiPM PDE >50% (~4000 p.e./MeV)
- > SiPM coverage: 94% of $\sim 4\pi$, $\sim 10m^2$
- ➢ SiPM DCR: <100 Hz/mm^2 @-50°C</p>
- Dewatering Low-temperature LS : <10ppm</p>

Central detector

- Acrylic sphere 1.8m (ID), 20mm-thick with 2.8 t Low-T Gd-LS
- Copper shell 1.886m (ID), 12mm-thick with 4024 pieces of 50*50mm^2 SiPM tiles
- SS tank 2.09m(ID), 10mm-thick with 3.2 t LAB/Gd-LAB

Cryogenic system

with 4.5kW cooling power and 150mm-thick melamine foam full covering keeping -50°C running condition

Top Veto Tracker (TVT)
 4-Layer PS, 160 strips
 2 m×20 cm×2 cm/strip
 Top Shield(HDPE)
 ACU & CLS
 6 types of exemption sources

Water Tank 3 irregular water tanks ~300 3" PMT

Overflow Tank Cu Shell SiPM Array Acrylic Vessel SS Tank Insulation (MF) Bottom Shield(Lead)

FEBs Schematics

FEBs Schematics

FEB Test Board

FEBs supply & connection

6/10

FEBs Low-Voltage supply on the row High-Voltage power supply splitted for all 6 tiles

I_{LV-BIAS} ~ 80mA x #_{FEB} @ -50°C

Power Supplies

Each tile delivered with its own calibration file, where V_{OP} all 16 SiPM are reported @ +25°C

Temperature coefficient: +54 mV/°C

HV @ -50°C V_{OP} – (0.054*75)

HV must be doubled, due to the series connection carried out by the FEB

Grounding

Grounded

Different grounding schematics are feasible with the current hardware.

We are going to setup lab to study the different grounding connection.

The results of this study will be tested in the 1-to-1 prototype setup in IHEP.

Recovery Time

• We reduced the gain (1/20) of 1 FEB channel to have a «self calibration» of the light pulse.

- The «rebounce» happens after the TIA saturation.
- In the circled area the photon counting can be executed but it needs a careful evaluation of the baseline.

DCR MEASUREMENT

