

CMS ECAL Upgrade Front End card Design and performance tests

A.Dolgopolov, A.Singovski, University of Notre Dame, USA

On behalf of the CMS Collaboration

Phase II ECAL on-detector electronics Upgrade

FE powering

Upgrade FE card functionality

Upgrade FE card is the interface between intelligent VFE chips, CATIA and LiTE-DTU and powerful FPGA – based Barrel Calorimeter Processor (BCP). It provides:

- ✓ 160MHz clock distribution to the VFE readout channels
- ✓ VFE, LVR and FE chips configuration and control via I2C interfaces, one per VFE and LVR board
- ✓ Lossless data streaming from VFE readout channels via 1.28Gb/s serial links (lpGBT – links mechanism)
- ✓ Data transmission to BCP via four 10.24Gb/s optical links
- ✓ Chips status, temperature, power voltage, APD dark current readout via I2C interface and lpGBT optical up-link at 2.56Gb/s

Implementation

FE – VFE slow control

Electromagnetic Calorimeter

(ECAL)

FE PCB stack out

- Class 3 PCB
- 14 layers
- Micro-vias between layers 1-2, 2-3, 14-13, and 13-12

double gain pre-amplifiers (CATIA) and 5 ADC

> 1x Front-End (FE) card with 4x lpGBT 1x GBT-

➤ 1x Low Voltage Regulator (LVR) card for VFE and

4x lpGBT chips, one in TRx mode (Master) and three

1x GBT-SCA chip for the APD dark current readout

1x 4T1Rx Versatile link optical transceiver

and data management chips (LiTE-DTU)

SCA and 1x 4T1Rx optical transceiver

in Tx mode (Slaves)

Serial lines impedance control with 10% precision

Functionality tests

Stand-alone test

- Will be performed by the assembly company
- Electrical I2C control via PiGBT interface
- Electrical system clock from external clock generation
- lpGBT chips configuration
- 12C registers read/write

Functional test

- Will be performed at CERN upon reception Clock, control and readout via optical links from BCP
- Production LVR and VFE board for power, control and
- readout
- Full configuration of FE chips
- Full configuration of VFE chips
- Data alignment, PED and test pulse readout

Thermocycling and burning-in

- Climatic chamber
- Power to FE from external source
- Electrical I2C via PiGBT and Keithley switch
- Burning-in at 70C during 72 hours Periodic thermocycling 70C→9C→70C
- Periodic I2C initialization configuration
- Full functional test at the end of operation
- Special thanks to T. Gadek and C. Haller, ETH Zurich, for providing the VFE and LVR cards and

for preparing the test setup for the readout tower test, respectively.

Full readout tower validation in radiation environment

- A complete tower with the latest versions of VFE and FE
- Five APD capsules connected to VFE 0
- Continues Reset/Config/Readout cycles by ECAL off-detector readout board (BCPv1)

CERN CHARM facility

Tower at η =1.41 vs CHARM pos13

	HL-LHC (3000 fb ⁻¹)	CHARM (17 days)
Dose rate	$9.57e-05 \; \text{Gy s}^{-1}$	$7.84e-04 \; \mathrm{Gy} \; \mathrm{s}^{-1}$
Charged hadron flux	$7.38e + 04 \text{ cm}^{-2} \text{s}^{-1}$	$1.48e+06 \text{ cm}^{-2}\text{s}^{-1}$
Total dose	5'740 Gy	1'380 Gy
Total Hadron fluence	4.43e+12 cm ⁻²	5.48e+12 cm ⁻²

Readout routine

- Stable operation in hostile radiation conditions (Charged hadrons flux 20 times higher than max. expected for ECAL tower at HL-LHC at $\eta = 1.41$)
- SEU cases detected and handled by chips
- Good APD dark current readout by GBT-SCA ADC

1WEPP-23 **Topical Workshop on Electronics for Particle Physics** Geremeas, Sardinia, Italy, 2 – 6 October 2023