

The Optosystem: validation and testing of the high-speed optical-to-electrical conversion system for the readout of the ATLAS ITk Pixel upgrade

Silke Möbius on behalf of the ATLAS-ITk collaboration

University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics

Why ATLAS needs a new tracking detector and implications for the readout system

LHC:

- *pp* collider at the energy frontier
- 40 MHz collision rate
- Upgrade to enhance physics reach

	LHC	HL-LHC (2028)
Energy	7-14 TeV	14 TeV
Luminosity	$2 \times 10^{34} \mathrm{cm}^2/\mathrm{s}$	$7.5 \times 10^{34} \mathrm{cm}^2/\mathrm{s}$
Pile-up	pprox 55	≈ 200
Highest fluence	$5 imes 10^{15} rac{ m n_{eq}}{ m cm^2}$	$1.3 imes10^{16}rac{n_{eq}}{cm^2}$

ITk requirements:

- Higher granularity tracking \Rightarrow from $\sim 10^8$ (ID) to 5 $\cdot 10^9$ electrical channels
- Readout speed of 1 MHz
- \Rightarrow corresponds to \sim 25 Tbps
- Radiation hardness
- \Rightarrow foreseen maximum integrated dose is ~ 10 MGy.

Optosystem for ITk Pixel detector readout:

- ~ 1600 Optoboards
- Signal recovery/equalisation of the signal (GBCR)
- Multiplexing (serialisation) of the independent sensor signals (IpGBT)
- Opto-electrical conversion (VTRx+)
- Radiation hardness (estimated dose: 150 kGy)
- More than 4000 optical fibres
- Downlink: Command and triggers from off-detector readout system (\sim 190 FELIX cards) to front-end chips in detector modules
- Uplink: Opto-electrical conversion of detectors signals coming from

\Rightarrow Upgrade of ATLAS inner detector (ID) to all-silicon new inner tracking detector (ITk)

Optoboard System Optoboard optical signal electrical signal -----1.28 Gb/s 10.24 Gb/s -----data **GBCR IpGBT** VTRx+ command/control 2.56 Gb/s -----

Data transmission scheme with the Optoboard System.

ITk Pixel Optosystem - from the panel to the Optoboards

- •9V powering to the Optosystem from the ATLAS service caverns
- 8 Optopanels for the ITk detector, housing 28 Optoboxes each:
- Faraday cage shielding
- Cooling system for the Optoboxes $(\sim 25 \,\mathrm{W} \mathrm{\ per\ box})$
- Power conversion with bPOLs On the Optoboxes and Optoboards Optopanel position in ATLAS. • Up to 8 Optoboards in an Optobox.

front-end chips and transmitted to FELIX cards

Optopanel with Optoboxes.

Fully populated Optobox.

Optoboard v2.1 backside.

Data Transmission Tests

Bit error ratio tests (BERT) to evaluate the signal transmission:

- Verification of different Optoboard versions
- Twinax cable vendor validation (Samtec or Molex)
- Assurance of proper function of data transmission chain detector components (patch panels and connectors)
- **PRBS7** signal of module:
- Pattern checker on IpGBT can execute a BERT
- Result is read out via optical fibre to FELIX 64b/66b ITkPix idle signal of module:
- Test on realistic data stream = Soft Error Test
- Checking of the frame with FELIX

Soft Error BER Tests

Soft error tests with 95% CL on BER limit $< 2.7 \cdot 10^{-12}$ (Optoboard v3) \Rightarrow Multiple soft error tests are performed, changing the parameters of the equaliser of the GBCR

Soft error tests with two twinax bundles.

Complementary tests

QC setup for the data transmission tests of Optoboards.

Conclusion and Outlook

- Almost final data transmission chain working within required BERT limits
- Finalizing irradiation tests on all components
- Extensive tests of final read-out already during ITk detector integration

- Irradiation tests with Bern cyclotron (18 MeV protons)
- Irradiation of components of the data transmission chain \Rightarrow subsequent evaluation of performance
- Operation of an Optoboard during irradiation
- Verification of the powering scheme concept
- Optopanel cooling tests with heat pads
- Readout of a module during a testbeam with an Optoboard

System Tests and Integration

• 11 sites have been appointed to build and test sections of the ITk detector • Sites from all subsystems will integrate their test setups in one large setup • User-friendly software for configuration of Optoboards • Custom Optopanel with 1-4 Optoboxes for conceptual tests

