

HGTD PEB DC/DC Power Block in Low Temperature and Magnetic Field Operation

Mingjie Zhai^{1,2} on behalf of the HGTD Group

¹Institute of High Energy Physics, Chinese Academy of Sciences, ²University of Chinese Academy of Sciences

Efficiency

Output 007

100

Ripple

Rise/Fall edge

Output Current [A]

• Without input ripple:

- Output ripples are around 4~6 mV.
- Negligible impact from magnetic field.
- With input ripple:
 - Negligible impact on output ripple if input ripple amplitude < 1000 mV (frequency = 50 Hz).
 - Observed in both temperature tests
 - at -30 °C magnetic field tests at 0.4 T.

- The rise time is smaller than 300 μ s, and the fall time is smaller than 50 μ s.
- Independent of rising/falling rate of input voltage.
- Observed in both temperature tests at -30 °C magnetic field tests at 0.4 T.

Conclusion

The DC/DC BPOL12V power converter block satisfies the HGTD

Peripheral Electronics requirements, both in low temperature

down to -30 °C and under a magnetic field of ~0.4 T.

Reference:

[1] ATLAS Collaboration, Technical Design Report: A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade, ATLAS-TDR-031 [2] ATLAS Collaboration, Technical Specification Peripheral Electronics Board in High Granularity Timing Detector, ATLAS Doc.: AT2-G-ES-0012

zhaimingjie@ihep.ac.cn

Output Current [A]