

TWEPP 2023

Topical Workshop on Electronics for Particle Physics

Radiation Tolerance of the MUX64 for the High Granularity Timing Detector of ATLAS

Wang Chuanye¹, XU Zifeng¹, ZHANG Li³, HUANG Xing², SHA Qiyu^{3,4}, GE Zhenwu¹, CHE Yimin¹, HOU Suen⁵, ZHANG Jie^{3,4}, LIU Tiankuan², LIANG Zhijun^{3,4}, ZHANG Lei¹, YE Jingbo³, QI Ming¹

¹Nanjing University(CN), ²Southern Methodist University(US), ³Institute of High Energy Physics, Chinese Academy of Sciences(CN),

⁴University of Chinese Academy of Sciences(CN), ⁵Institute of Physics, Academia Sinica(TW)

chuanye.wang@cern.ch

Figure 1. Schematic of the ATLAS detector and the HGTD vessel

Introduction

- The MUX64 ASIC is a 64-to-1 analog multiplexer developed for multiplexing of ADC input channels in the peripheral electronics of High Granularity Timing Detector (HGTD) for the ATLAS Phase-II upgrade.
 - On-resistance (R_{on}) of MUX64 is required to be lower than 900 Ω for matching the precision of the ADC, while off-resistance (R_{off}) of MUX64 is required to be larger than 60 MΩ.^[4]
 - The MUX64 chips will be used in the radiation field of high-luminosity pp collisions at LHC to an integrated luminosity of 4000 fb⁻¹^[2]. To verify the radiation tolerance of the MUX64, Non Ionizing Energy Loss (NIEL) and Total Ionizing Dose (TID) tests have been performed.
 - The NIEL test was conducted with 80 MeV protons beam at APEP of CSNS^[3], two chips was irradiated to a

fluence of 3.21×10¹⁵ (Si 1 MeV neq)/cm². The TID test was carried out in a MultiRad160 X-ray machine, five chips were irradiated to 0.746 MGy (Si) at a dose rate of 5.98 Gy/s (Si).

Radiation tolerance requirements

Radiation tolerance requirement

	Requirement (Ave of Genta and Fluka)	Requirement (Max of Genta and Fluka)	Test Dose
Total Ionizing Dose [Gy]	4.71 × 10 ⁵	4.97 × 10 ⁵	7.46 × 10 ⁵
1 MeV neutron equivalent [cm ⁻²]	2.18×10^{15}	2.18×10^{15}	3.21×10^{15}

Table 1. TID and NIEL requirement and test results

• The R_{on} of MUX64 was measured to characterize the radiation damage.

NIEL test setup

Parameters of the CSNS Proton Experiment Platform:

- Energy: 10-80 MeV; Beam Injection rate: $10^5 10^{10} pps/cm^2$.
- Beam spot size: $10 \times 10 \text{ } mm^2 50 \times 50 \text{ } mm^2$
- (continuously adjustable uniformity > 95%).

Figure 3. Photo of MUX64 at APEP

NIEL test conditions

- Average injection proton rate: 1.86×10^9 pps/cm² (14.48 days in total).
- NIEL scale factor: 1.378 (for 80MeV proton to 1MeV neutron).
- Total equivalent fluence: 3.21×10^{15} (Si 1 MeV neq)/cm².

TID test setup

Basic Parameters of MultiRad160 X-ray machine:

- Max voltage: 160 kV, Max current: 25 mA, max dose rate = 5 Gy/s(at positioned in air, 14.5 cm from the source).
- The MultiRad160 used in this test has been calibrated (in Si) by the ATLAS ITK strip group at 40 kV, 20 mA.^[1]

TID test conditions

- Dose rate: 5.98 Gy/s (in Si, 10 cm from source, 40kV, 20mA).
- Total irradiation dose: (35 h per chip) 7.46×10^5 Gy.

Figure 4. MultiRad160 configuration

NIEL and TID test results

Technical procedure

MUX64 before NIEL irradiation

Result of TID test

further analysis required

Figure 4. Test procedure of MUX64. High Temperature Operating Life(HTOL). Temperature Cycling(TC).

Result of NIEL test

Two MUX64 are tested simultaneously. Both chips are irradiated in the proton beam, positioned in sequence.

Figure 6. (a) Input voltage (V_{in}) curve; (b) R_{on} versus V_{in} before irradiation.

- The spike near 0.65V in figure 6 (b) is because both MOSFETs of transmission gate in MUX64 are in partially conducting state.
- The R_{on} over 0-1V input voltage (V_{in}) is required to be lower than 900 Ω . (Same as TID test)

• The smooth surface shown

in Figure 7 indicates no

channel misalignment

MUX64 performance after NIEL irradiation

during irradiation. Figure 7. V_{in} to each channel under irradiation

- The MUX64s were irradiated one by one in the X-ray machine. In total five samples were tested.
- The MUX64 sample in X-ray cavity was supported 10 cm from the source.
- A 0.15 mm Al foil was applied to absorb low energy photons.
- Dose rate calibration had included the Al filter.
- The temperature in the X-ray chamber was not controlled.

MUX64 before TID irradiation

- R_{on} of each channel were measured with V_{in} ranging from 0.05V to 1.20V (step 0.05V).
- Figure 10. shows the expected R_{on} - V_{in} Curve.

MUX64 performance after TID

(a) ΔR_{on} after irradiation; (b) ΔR_{on} after annealing.

Figure9. MUX64 position in the X-ray cavity.

Figure 10. R_{on} versus V_{in} before irradiation.

The R_{on} were measured for a typical (Chip-48) before irradiation at 28.2°C, after irradiation at 26.5°C, and after annealing at 25.0°C.

Figure 5. MUX64s in NIEL test.

- A thin aluminum foil is attached to the front of the first MUX64 to measure the flux of proton.
- No accurate measurement for the flux nor the proton beam energy of the second MUX64.

• The ΔR_{on} after irradiation is less than 35 Ω .

- The ΔR_{on} after annealing is less than 30 Ω.
- The other 4 chips have compatible performance after TID.

Conclusion

- The radiation tolerance of MUX64 is verified. It is expected to function effectively in the high-luminosity environment of the HGTD for a service period corresponding to the accumulated luminosity of 4000 fb⁻¹.
- The MUX64 samples were irradiated by 80 MeV protons for NIEL effect equivalent 3.21×10^{15} (Si 1MeV neq)/cm², and X-ray for TID to 0.746 MGy (in Silicon). The multiplexing functionality shows negligible degradation for the radiation tolerance requirements of HGTD.

Reference

[1] Florian Haslbeck, Abhishek Sharma, Carlos Solans. Dose calibration of the IR-160 xray machine. https://ade-pixel-group.web.cern.ch/xray/ [2] P. Moreira et al. The lpGBT: a radiation tolerant ASIC for Data, Timing, Trigger and Control Applications in HL-LHC, presented at TWEPP 2019. [3] Chen, H., Wang, XL. China's first pulsed neutron source. *Nature Mater* 15, 689–691 (2016). https://doi.org/10.1038/nmat4655 [4] Z. Xu et al., MUX64, an analogue 64-to-1 multiplexer ASIC for the ATLAS high granularity timing detector, 2023 JINST 18 C03012