

On-beam system test of the new readout electronics for the CMS Electromagnetic Calorimeter upgrade

Mattia Campana (Sapienza Universita' di Roma, Istituto Nazionale di Fisica Nucleare, CERN) On behalf of the CMS Collaboration

ECAL : the CMS electromagnetic calorimeter

ECAL is an homogeneous calorimeter and is made of 75848 lead tungstate (PbWO₄) scintillating crystals, placed around the beam line with a cylindrical symmetry and oriented towards the nominal interaction point. ECAL is divided into two regions:

- **Barrel:** covering the central region of the cylinder
 - → 36 Supermodules (1700 crystals each)
- \rightarrow 2448 **5x5 crystal matrices,** each one equipped with a front end read out board
- Endcap: the lateral faces of the cylinder

Supermodule Endcaps

High Luminosity L

To cope with HL-LHC operations challenges (140-200 interactions per collision - compared to the current 50 of Run2) the ECAL electronics will be upgraded, while the scintillating crystals and their associated

avalanche photodiodes (APDs) will be retained.

- Temperature: $18^{\circ}C \rightarrow 9^{\circ}C$
- → APDs dark current mitigation

Electron beam on single crystals

E_{beam} = 20 GeV - 250 GeV

BEAM

Hodoscopes measure position

faster electronics, oversampling and data streaming towards offdetector electronics (40 MHz \rightarrow 160 MHz)

- Reduces signal from direct ionisations of APDs (spikes)
- Improves time resolution for primary vertex identification

➡Reduces impact of pileup & noise

Phase 1: ECAL excellent energy resolution crucial to observe and study H**→**γγ.

HL-LHC: The upgraded electronics design targets to maintain the current energy resolution performance, preserve the physics potential and obtain a time resolution of 30 ps for E>50 GeV

Electron test beam

DIGITISER

CRYSTAL

Spikes are unwanted signals generated by direct ionisation with energy deposition in the depleted silicon bulk of the APDs

The **narrower pulse shape** and the **single crystal** info at trigger level will provide much better spike rejection than in Phase-1 via shape discrimination

References

MCP (Micro Channel Plate) to measure time of incoming particle

APD

VFE

BCP

FE

TWEPP 2023 - Topical Workshop on Electronics for Particle Physics 2nd - 6th October 2023, Calaserena Village, Italy

[1] The Phase-2 Upgrade of the CMS Barrel Calorimeters (CMS-TDR-015)

Mattia Campana mattia.campana@cern.ch

