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Overview

At the CMS experiment, a two-layer trigger system is used to decide which collision events to store for later analysis. To ensure the physics performance is
maintained or even improved under the new high-luminosity conditions during Phase-2 operation, the CMS Level-1 Trigger is being entirely redesigned. Besides
cut-based triggers, the Global Trigger will also apply novel machine-learning-based conditions on trigger objects identified by the upstream systems. These

triggers rely on the full event topology to trigger on previously inaccessible events.
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Development workflow BERRRE

Model Evaluation

Neural Network development workflow

Step 1: Model definition Step 3: FPGA porting
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As proof of principle four different signal signatures were considered: lin terms of <total,integer> bit width; 2 Weights and biases have two different quantizations
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L1T Objects |Subsystem | Variables L1T Objects |Subsystem| Variables Serenity [2] board equipped with a Virtex CLB LUTs 218k (22%) 320k (27%)
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Supervised training: background and signal Unsupervised training + knowledge
labels are known from the start distillation: Teacher is trained with only the
background, while the student uses background

and random samples
Multiple optimizations take place during and after training: hyperparameter quantization,
pruning of synapses, knowledge distillation (only for auto-encoder) and input selection.
Each signal signature requires its own trained binary classifier model, while the
auto-encoder model is trained with only the minimum bias sample and for this reason it's

model independent.
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Custom interface to the Phase-2 Global Trigger framework

] Neural Network interface B Binary classifiers EMP link buffers
Serial data from upstream systems is streamed at 480 MHz in collections of 12 objects.
These data need to be deserialized, re-scaled and re-mapped in order to be fed into the Reference
NN module resulting in one wide bit-vector every 25 ns. NN block runs at 240 MHz, [1] Javier Duarte et al. " Fast inference of deep neural networks in FPGAs for particle physics”,
which is a good compromise between register usage and latency:. DOI: 10.1088/1748-0221/13 /07 /P07027
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________________ Contacts
The input interface module is entirely written in VHDL and it's model specific, e.g. _
bitwidth, number of inputs and re-scale parameters. gabriele.bortolato@cern.ch cms-|1t-p2gt@cern.ch
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