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Overview

At the CMS experiment, a two-layer trigger system is used to decide which collision events to store for later analysis. To ensure the physics performance is
maintained or even improved under the new high-luminosity conditions during Phase-2 operation, the CMS Level-1 Trigger is being entirely redesigned. Besides
cut-based triggers, the Global Trigger will also apply novel machine-learning-based conditions on trigger objects identified by the upstream systems. These
triggers rely on the full event topology to trigger on previously inaccessible events.
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Neural Network development workflow

Step 1: Model definition

Model definition and training with the
commonly used frameworks.

Step 2: Optimizations

Hyperparameter quantization,
connection pruning and knowledge
distillation.
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Step 3: FPGA porting

Python model translation to HLS and
finally to FPGA language [1]

Step 4: Interfaces — deployment

Interface layers to adjust input and
output data format. Deployment using
Vivado on the target FPGA.

From high level (Python) to hardware level (VHDL/Verilog) language to FPGA fabric.

Anomaly detection vs. signature based models

Two different flavours of neural networks are considered: deep binary classifiers and deep
auto-encoders. The first is designed to distinguish a specific signal signature, while the
second aims to characterize as much as possible the background and identify anything that
does not resemble it marking it as anomalous.
As proof of principle four different signal signatures were considered:

– Minimum bias (as background)

– HH→2b2τ

– VBF→ ττ

– tt̄ decay

Binary classifier approach
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First 6 jets CL2 pT η
First 4 electrons CL2 pT η
First 4 muons GMT pT η
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Supervised training: background and signal
labels are known from the start

Auto-encoder approach

L1T Objects Subsystem Variables

First 6 jets CL2 pT η ϕ
First 4 electrons CL2 pT η ϕ
First 4 muons GMT pT η ϕ
First 2 taus CL2 pT η ϕ

Missing energy CL2 Emiss
T - ϕ
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Student Anomaly
score student

Auto-encoder
Reconstructed

data

62⇾32/16/7/5⇾1

62⇾300/200/200/100/50/20⇾7⇾20/50/100/200/200/300⇾62
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Unsupervised training + knowledge
distillation: Teacher is trained with only the
background, while the student uses background
and random samples

Multiple optimizations take place during and after training: hyperparameter quantization,
pruning of synapses, knowledge distillation (only for auto-encoder) and input selection.
Each signal signature requires its own trained binary classifier model, while the
auto-encoder model is trained with only the minimum bias sample and for this reason it’s
model independent.

Custom interface to the Phase-2 Global Trigger framework

Serial data from upstream systems is streamed at 480 MHz in collections of 12 objects.
These data need to be deserialized, re-scaled and re-mapped in order to be fed into the
NN module resulting in one wide bit-vector every 25 ns. NN block runs at 240 MHz,
which is a good compromise between register usage and latency.
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The input interface module is entirely written in VHDL and it’s model specific, e.g.
bitwidth, number of inputs and re-scale parameters.

Model Evaluation

Reference: Binary classifier = 100%

Fixed rate

Illustration: the bi-
nary classifier effi-
ciency at a given
rate is taken as refer-
ence, while the auto-
encoder efficiency is
expressed relative to
it.

Model Framework Prune Quant1 LUT[k] FF[k] DSP Lat [ns]
Eff/EffBinaryBaseline
HH tt̄ VBF

Baseline AE 0% FP32 - - - - 70.6% 60.7% 36.7%

hls4ml AE 50% <8,1/2>2 42 15 301 70.8 70.5% 60.7% 36.7%

Baseline HH 0% FP32 - - - - 100.0% - -

hls4ml HH 50% <6/8,1/4>2 4.6 2.3 19 33.3 98.3% - -

Baseline tt̄ 0% FP32 - - - - - 100.0% -

hls4ml tt̄ 50% <6/8,1/4>2 5.4 2.4 20 33.3 - 98.9% -

Baseline VBF 0% FP32 - - - - - - 100.0%

hls4ml VBF 50% <6/8,1/4>2 7.7 3.4 45 33.3 - - 95.0%
1In terms of <total,integer> bit width; 2 Weights and biases have two different quantizations

Hardware implementation

The neural network block is deployed on a
Serenity [2] board equipped with a Virtex
Ultrascale+ (VU9P) FPGA.
The neural-network based algorithms have
been integrated in the Global Trigger (GT)
pre-production firmware [3] that is based on the
EMP framework [4].

Site Type Synth Impl

CLB LUTs 218k (22% ) 320k (27%)
CLB Regs 509k (22%) 452k (19%)
BRAM 475 (22%) 723 (33%)
DSPs 150 (2%) 1290 (19%)

The GT firmware demultiplexes data received from EMP data region buffers and distributes
the data collections to all SLRs. For testing purposes one anomaly detection trigger and the
three binary classifier models are placed once per each SLR alongside their input interfaces.

GT demultiplexers and distribution
Neural Network interface

Anomaly detection
Binary classifiers

EMP TTC & DMA
EMP link buffers
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