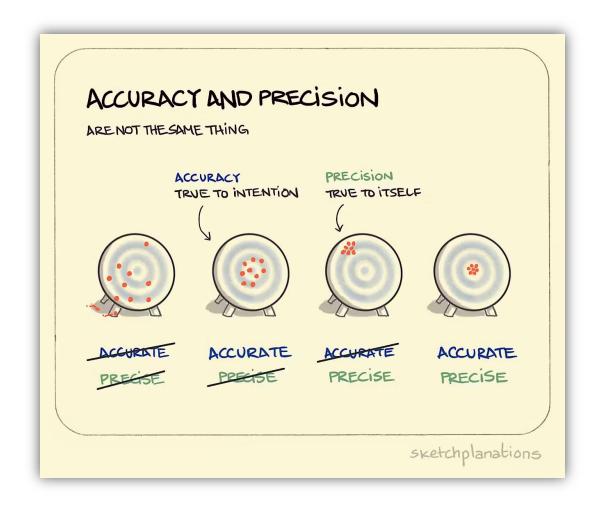
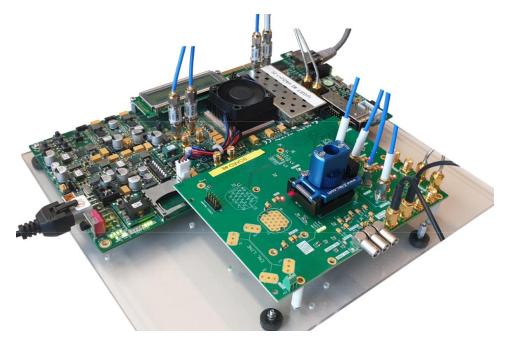

IpGBT – Calibration of Analog Peripherals

Stefan Biereigel, CERN on behalf of the lpGBT team

TWEPP 2023 Link User Group Meeting 05 October 2023


Motivation & Goals

- The IpGBT provides analog peripherals for experiment monitoring and control
 - Bandgap reference voltage generator
 - 16 channel, 10 bit ADC
 - 8 external inputs
 - Temperature sensor
 - Supply voltage monitor
 - 8 channel, 8 bit current DAC
 - 1 channel, 12 bit voltage DAC
- Calibration required for best performance
 - Process variations (chip-to-chip, wafer-to-wafer)
 - Temperature variations
- Today
 - Methods, Scope, Example, Issues


Motivation & Goals

- Goals of calibration effort
 - Define a range of environmental conditions where accuracy can be guaranteed
 - Develop the required procedures and per-chip calibration constants for users
 - Produce accuracy estimates for calibrated devices
 - Establish user access to this data
- Guided by JCGM 100:2008 (Guide to the expression of uncertainty in measurement)
 - Identification and assessment of all important contributors to final uncertainty budget
 - Long process (schematic and datasheet reviews, calculations, simulations, measurements, ...)

Test System & Scope of Calibration

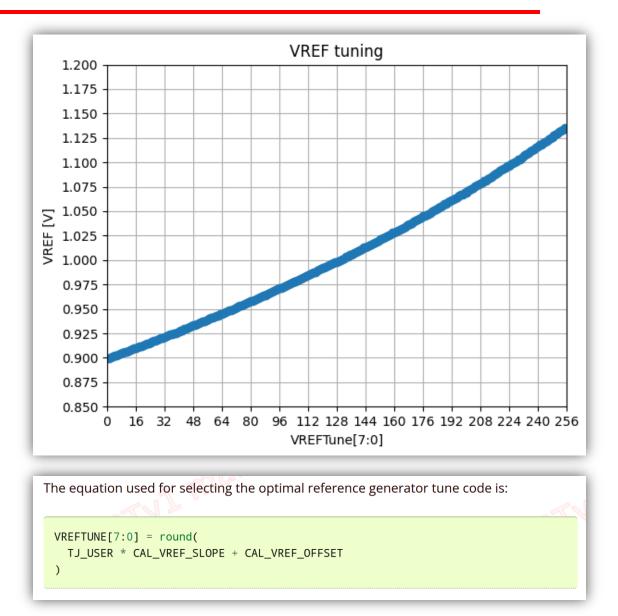
- Production testing was performed using lpGBT test system
 - Contains calibrated instrumentation for testing of analog peripherals
- Per-ASIC calibration measurements performed during volume production testing
 - At two temperatures (above and below 0°C)
 - At 1.20 V (only)
- Calibration data provided only for productiongrade lpGBT v1 ASICs (2023)
 - No data available for pre-2023 samples (v0 and preproduction v1 devices)
- No per-device data available to calibrate against other parameters (e.g. VDD)

[1] J. Mendes et al: "IpGBT Tester: an FPGA based test system for the IpGBT ASIC", TWEPP2019
[2] N. Guettouche et al: "The IpGBT production testing system", TWEPP2021

Calibration Models

- Choice of calibration model is important
- Models chosen for IpGBT analog subsystem
 - Linear models used for single-point process/temperature calibration
 - Fixed offset (process), fixed slope (temperature)
 - Temperature-dependent linear models used for transfer function corrections
 - Offset and slope have linear temperature dependence
- Already with these models, sensitivity to other variables dominate uncertainty
 - No improvement achieved by higher order calibration
- Calibration coefficients also take care of 'unit conversion'
 - ADC LSB \rightarrow Volt, Ampere \rightarrow LSB, Voltage \rightarrow °C

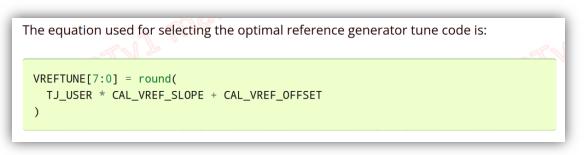
User Access to Calibration Data


- Reminder: Calibration data is <u>NOT</u> stored in eFuses
- Instead, CHIPID is used to look up calibration data
 - Database for all ASICs available online
 - May be updated/amended in the future
- Procedures for performing calibration are documented in the manual
- Reference implementation of each procedure available in the *lpgbt_control_lib* (lpGBT driver library)
 - Also used for validation of the calibration

Generated on: 2023/17/07 16:41:20 # Data Version: 1

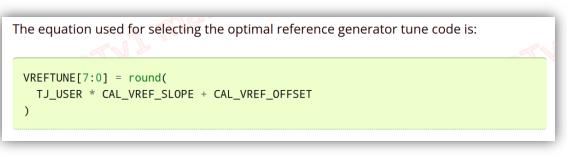
Script Version: 52a844ecd77c6b552395952538ace CHIPID, ADC_X16_OFFSET, ADC_X16_OFFSET_TEMP, ADC_X 00244200,4.270e-01,8.708e-06,1.432e-04,4.622e-0 0429011F, 4.265e-01, -1.236e-05, 1.437e-04, 2.233e-04290123,4.251e-01,5.429e-07,1.437e-04,1.382e-0 0429012C, 4.267e-01, 5.205e-06, 1.428e-04, 3.099e-0 04290145, 4.239e-01, 3.583e-06, 1.433e-04, -2.549e-0429014A, 4.260e-01, -5.455e-07, 1.434e-04, 5.026e-04290176, 4.252e-01, 3.769e-06, 1.433e-04, 4.527e-0 04290179,4.262e-01,-1.029e-05,1.437e-04,2.734e-04290186, 4.267e-01, -6.121e-06, 1.434e-04, 1.029e-04290189,4.278e-01,-5.971e-06,1.434e-04,-1.248e 042901B5, 4.253e-01, -5.278e-06, 1.433e-04, 3.179e-042901BA, 4.252e-01, 3.802e-07, 1.438e-04, -2.505e-042901D3, 4.276e-01, 5.460e-06, 1.437e-04, 2.130e-0 042901E0, 4.269e-01, -6.154e-06, 1.433e-04, -2.683e 04290213,4.267e-01,2.876e-06,1.430e-04,3.296e-0 0429021C, 4.303e-01, -1.396e-05, 1.436e-04, 5.229e-04290220,4.241e-01,1.087e-05,1.433e-04,4.649e-0 0429022F, 4.270e-01, -7.223e-06, 1.433e-04, -9.714e 04290246, 4.284e-01, -9.823e-07, 1.432e-04, 1.119e-

Example: Reference Voltage Generator

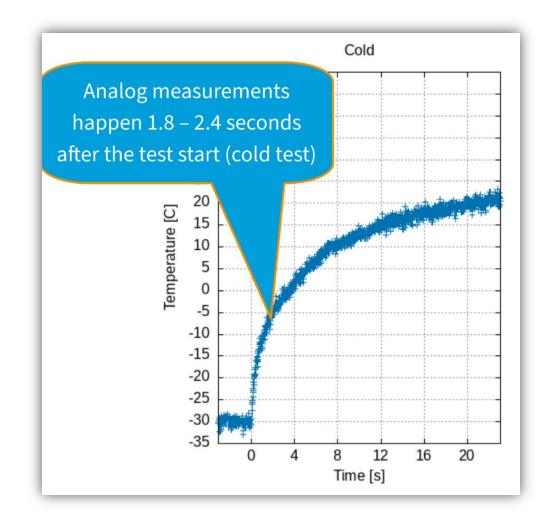

- Bandgap reference + voltage multiplier with 8 bit control
- Tune value calculated using estimated junction temperature
- <u>Uncalibrated error</u> is large, dominated by
 - Bandgap parameter spread
 - Temperature sensitivity
- Calibrated error dominated by
 - Supply voltage uncertainty
 - Uncertainty of junction temperature

Example: Reference Voltage Generator

- Bandgap reference + voltage multiplier with 8 bit control
- Tune value calculated using estimated junction temperature
- <u>Uncalibrated error</u> is large, dominated by
 - Bandgap parameter spread
 - Temperature sensitivity
- Calibrated error dominated by
 - Supply voltage uncertainty
 - Uncertainty of junction temperature

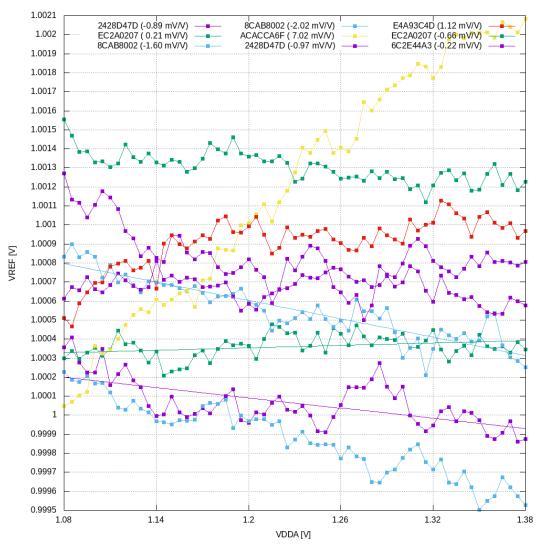

11P	Table 18.11 Internal VREF ge	enerator (VR	EFEnable=1)		
Symbol	Parameter/Conditions	Min.	Тур.	Max.	Units
VREF	Output voltage		1.0		V
ldd	Supply current (Note 1)			500	μA
lout	Current capability	-5	0	5	mA
ΔVREF/ΔVDDADC	Supply voltage sensitivity	-10		10 10	mV/V
ΔVREF/Tj	Temperature coefficient		0.25		mV/K
ΔVREF/lout	Load regulation (Note 2)		1.8		mV/mA
Cmax	Load capacitance (Note 3)		0	1	nF
Vrms	Output noise voltage			150	μV (rms)
ΔVREF_uncal	Uncalibrated Error (Note 1, 4)			100	mV
ΔVREF_cal5K	Calibrated Error (Note 1, 5)			6	mV
ΔVREF_cal10K	Calibrated Error (Note 1, 6)			7	mV

Example: Reference Voltage Generator


- Bandgap reference + voltage multiplier with 8 bit control
- Tune value calculated using estimated junction temperature
- <u>Uncalibrated error</u> is large, dominated by
 - Bandgap parameter spread
 - Temperature sensitivity
- Calibrated error dominated by
 - Supply voltage uncertainty
 - Uncertainty of junction temperature

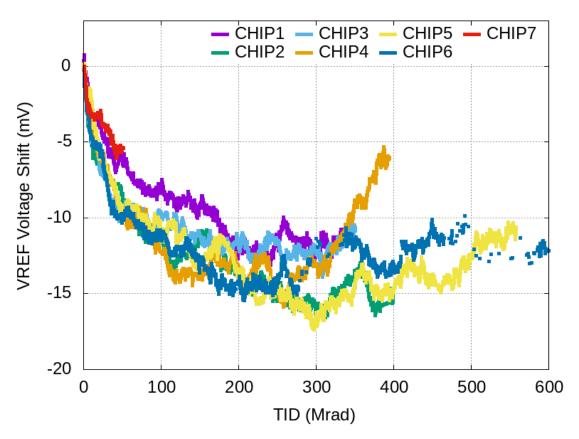
Symbol	Parameter/Conditions	Min.	Тур.	Max.	Units
VREF	Output voltage		1.0		V
ldd	Supply current (Note 1)			500	μA
lout	Current capability	-5	0	5	mA
ΔVREF/ΔVDDADC	Supply voltage sensitivity	-10		10	mV/V
۵VREF/Tj	Temperature coefficient		0.25		mV/K
ΔVREF/lout	Load regulation (Note 2)		1.8		mV/mA
Cmax	Load capacitance (Note 3)	1Pe	0	1	nF
Vrms	Output noise voltage			150	μV (rms)
ΔVREF_uncal	Uncalibrated Error (Note 1, 4)			100	mV
ΔVREF_cal5K	Calibrated Error (Note 1, 5)			6	mV
ΔVREF_cal10K	Calibrated Error (Note 1, 6)			7	mV

Thermometry


- Accurate calibration depends on accurate temperature measurements
 - During production testing
 - During use of ASICs
- Steady-state and transient analysis of production testing flow performed
 - Characterization of ASIC thermal properties
 - Large contributers to calibration uncertainty budget
- Users will also need to estimate the temperature of the ASIC!
 - Raising questions for applications that want to accurately <u>measure</u> temperature

Analysis of transient temperature behaviour during volume testing

Supply Voltage Sensitivity


- Supply voltage largest remaining factor after applying calibration
- Explicitly <u>not in scope</u> of end-user calibration
 - Large variability
 - Accurate in-situ measurements usually not available
 - Change of VDD <u>always</u> coupled to temperature (VDD $\rightarrow P_{diss} \rightarrow T_j$)
- Characterization still required and performed
 - Indicative figures available in the manual
 - Worst-case VDD sensitivity considered for uncertainty assessments

Sample supply sensitivity characterization data

Radiation Response

- TID-induced changes will compromise the accuracy of calibration
- Had to remain outside the scope, due to limitations of our TID campaigns
 - Temperature sensitivity
 - Dose rate sensitivity
 - Annealing (bias & temperatures)
 - Sensitivity to displacement damage
 - Variability between chips, wafers, batches
- <u>Recommendation</u>: Use pre-irradiation measurements as reference values, and expect gradual changes (loss of absolute calibration and accuracy) over time

Typical X-ray radiation response of the reference voltage generator (indicative only)

Summary

- Calibration effort for production lpGBT v1 devices was concluded in 2023
 - Identified achievable performance and design limitations
 - Key sources of uncertainty: thermometry, supply sensitivity, radiation
- Procedures and data now available to all users
 - Documentation: <u>https://lpgbt.web.cern.ch/lpgbt/v1/analog.html#calibration</u>
 - Electrical Specs: <u>https://lpgbt.web.cern.ch/lpgbt/v1/electricalCharacteristics.html</u>
- Feedback is welcome & appreciated!
 - Interested in applications and if calibration as provided is useful
 - LpGBT support forum / mailing list: <u>https://lpgbt-support.web.cern.ch/</u>

IpGBT – Calibration of Analog Peripherals

Stefan Biereigel, CERN on behalf of the lpGBT team

TWEPP 2023 Link User Group Meeting 05 October 2023 Backup

Lessons Learned

- Accuracy goals and how they can be achieved need to be considered early
 - Question of system design as much as circuit design!
 - 'Designing a 10 bit ADC' vs. 'Achieving 10 bit-level accuracy' <u>very</u> different challenges!
 - Otherwise: System may fall short of silent expectations!
- Test system performance must be well known and trustworthy
 - Requires its own calibration and qualification effort!
- Thermometry very challenging aspect of calibration
 - Precise measurements of junction temperature
 - Analysis of transient effects (e.g. during ASIC handling)
 - Often not enough information and/or time available to carry out these studies
 - In these situations, must assume large uncertainty \rightarrow negative impact on total accuracy
- Providing calibration guarantees is VERY challenging when TID is involved
 - Too many confounders, not aware of a viable analysis/qualification approach