

Technology update for the HEP community via the EUROPRACTICE services

Paul Malisse, imec

THE 3 PILLARS OF THE EUROPRACTICE SERVICE

□ EUROPRACTICE is a true one-stop shop that lowers the barrier to access all services that you need to design and fabricate electronic circuits and smart integrated systems:

under grant agreement No 825121

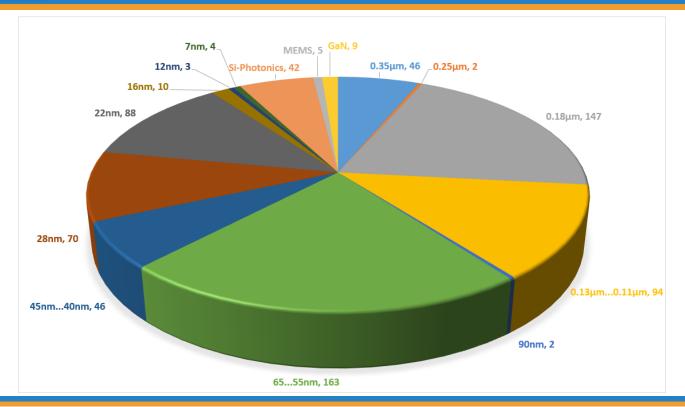
TODAY

TODAY's Foundry Offerings

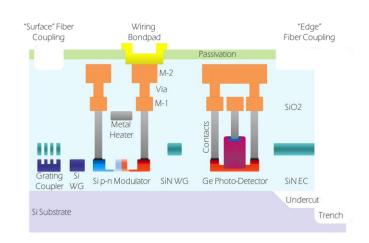
Smart Power

Photonics

Microfluidics



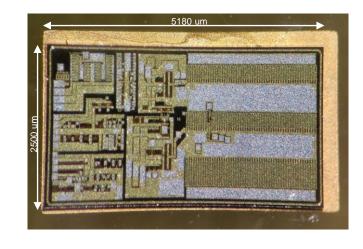
TODAY's ASIC technology usage - anno 2022



Update on Photonics MPW

- □ New PDK release v. 3.3.6 with improved cells and documentation
 - New PDK release coming 2024

- Upgrade of iSiPP200 platform: iSiPP200N
 - LPCVD SiN low loss WG
 - LPCVD SiN CWDM
 - LPCVD edge coupler

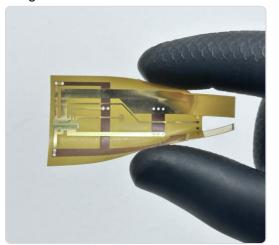


Update on GaN-IC MPW

- New 650V PDK release v. 2.2.0 with improved cells
 - New PDK release coming 2024 with RDL for wire bonding
- Highly complex demonstrators successfully characterized
 - HVGaNCon HB with integrated drivers and control circuits all-GaN
 - Monolithic HB 200V for space

under grant agreement No 825121

400V, IMHz, 200W high-efficiency totem-pole PFC converter*



Pragmatic's Flexible Integrated Circuit (FlexIC)

Pragmatic Semiconductor (Cambridge, UK), the world leader in ultra-low-cost flexible integrated circuits

FlexICs use thin-film transistor technology in combination with conventional semiconductor processing to deliver the world's most complex flexible circuits.

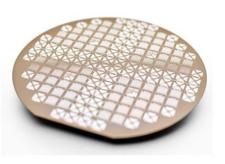
Ultra-thin ~30µm

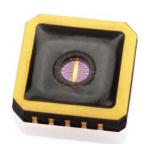
5mm bend radius

Low cost

Shock resistant

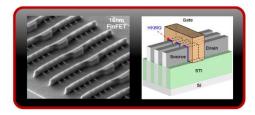
Metal 4 layers





TSMC FinFet Program

TSMC FinFet program



TSMC FinFet program: PROGRAM HIGHLIGHTS

- Offering the Industry's Most Successful FinFET Technology Family to EUROPRACTICE-member Universities
 - Starting with <u>TSMC N16 and N7</u> (including RF)
 - Tapeout and manufacturing services
 - Incentivised price offerings
- Design Collaterals for Both Teaching and Research
 - N7 and N16 Design Collateral: For test chip MPW
 - NI6ADFP (Academic Design Foster Package): For Teaching Purpose Only

TSMC FinFET Technology

- Better electrical control over channel and more effective leakage suppression
- Driving current enhancement
- Better analog performance from higher intrinsic gain

TSMC FinFet program: ACCESS

Academia

- Application for 1, 2 or 3 packages
- Approval by TSMC
- NDA & Security questionnaire
- Focus is University research, publication oriented

□ R&D

- Grey zone
- Industrial NDA
- Ambition to offer ADFP package for training mission at R&D

CAPACITY situation

Slowing Industry Conditions Temporarily Eases Supply Strain in 2023 for Silicon and SOI Wafers

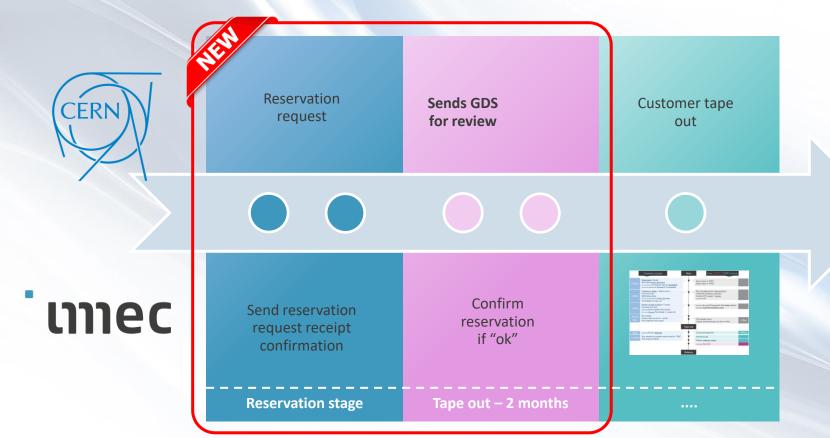
January 10, 2023

Investments in increased capacity not expected to alleviate strain until 2024-2025

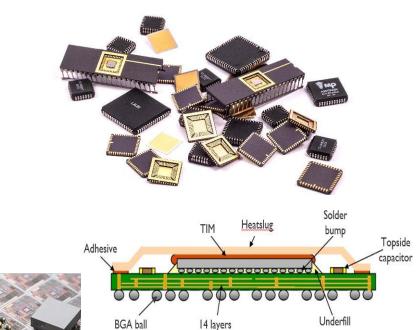
Ref: Techcet

- ☐ The perfect storm is over no more surprise effect
- Strong focus on forecasting more control
- Overseas expansion
- ☐ 65nm remains the most strained technology but for a different reason now

MPW reservation Flow


MPW reservation challenges

- ☐ The perfect storm is over Lessons learned also for MPW
- □ 180 stopped, 65 highrunner
- 2021 and 2022 very stressful
- Increased operational tasks (for example Export ...)
- □ IMEC-TSMC commitment to get design on the run based on two condition
 - Reservation between 4 and 8 months before deadline
 - Touchpoint 2 months before deadline

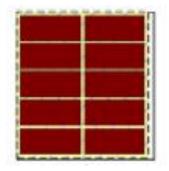

New flow

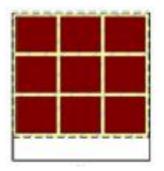
TODAY's assembly techniques

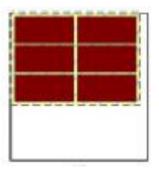
- Standard packages are available and used frequently
- Complex circuits and technologies require more advanced assembly techniques.
 - Wire bond Ball Grid Array's
 - Wafer Level Chip Scale Package (WLCSP)
 - Flip Chip Ball Grid Array's with complicated substrate design

substrate

materia




THE ECONOMICS



INTRODUCTION OF MFU as from 28nm

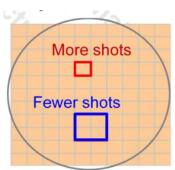
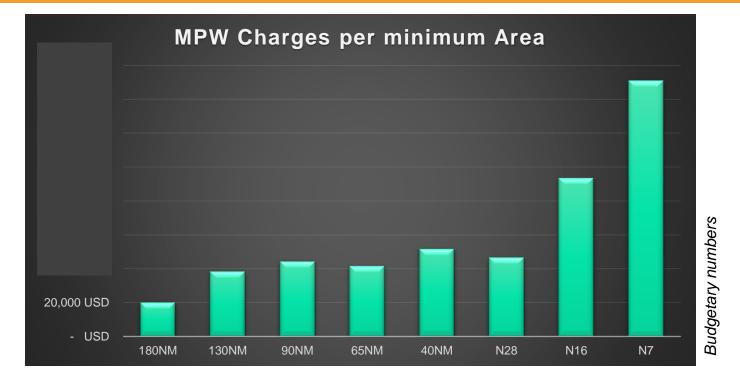
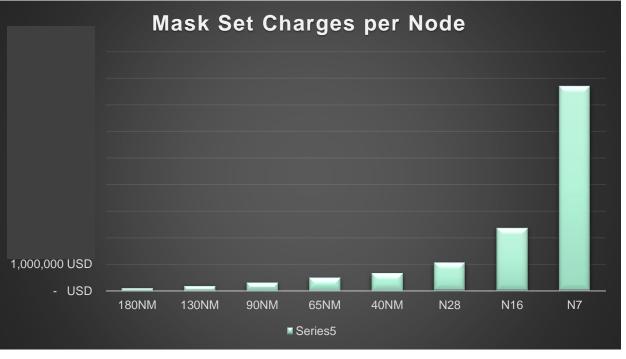



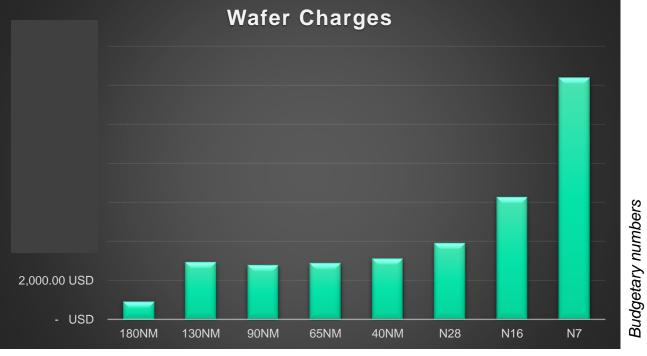
Figure 3: Number of shots to create dice on a wafer.

Actual MFU	NTO on and after 1/1/2020	
	≤ 28nm & ≥ 6nm	5nm & 4nm
MFU≥95%	-3%	-3%
90%≤MFU<95%	-2%	-2%
85%≤MFU<90%	-1%	-1%
80%≤MFU<85%	0%	0%
75%≤MFU<80%	1%	1%
70%≤MFU<75%	2%	2%
65%≤MFU<70%	3%	3%
60%≤MFU<65%	4%	4%
55%≤MFU<60%	5%	6%
50%≤MFU<55%	6%	8%
45%≤MFU<50%	8%	10%
40%≤MFU<45%	10%	12%
35%≤MFU<40%	12%	16%
30%≤MFU<35%	14%	20%
25%≤MFU<30%	32%	50%

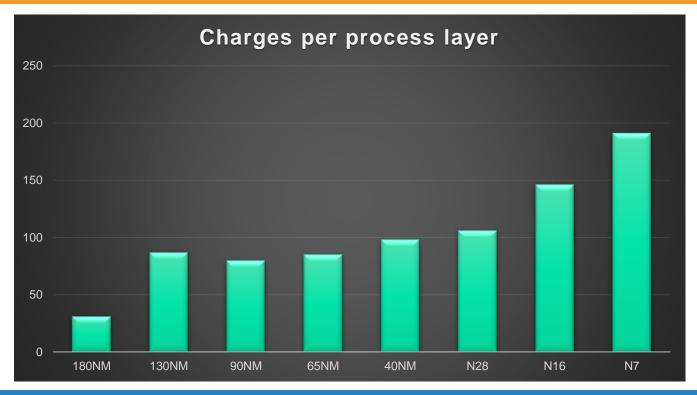
FinFet MPW are more expensive – MASK impact



FinFet MPW are more expensive – MASK impact



MASKS EVOLUTION



Normalized wafer charge for a fixed nr of METALS

Normalized towards process layers

Budgetary numbers

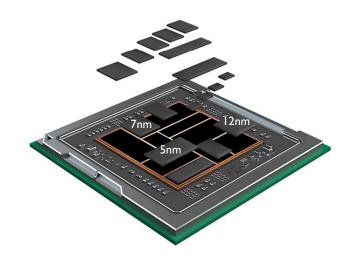
THE NEXT LEVEL

EUROPRACTICE has received funding from the

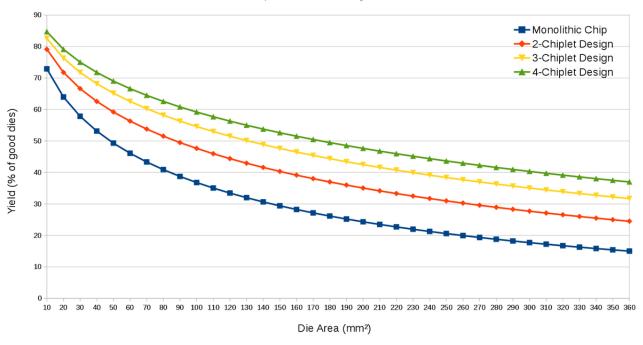
under grant agreement No 825121

European Unions H2020 Framework Programme for research, technological development and demonstration

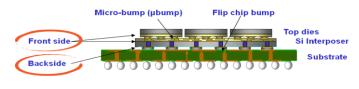
MORE than SILICON: New Assembly Techniques



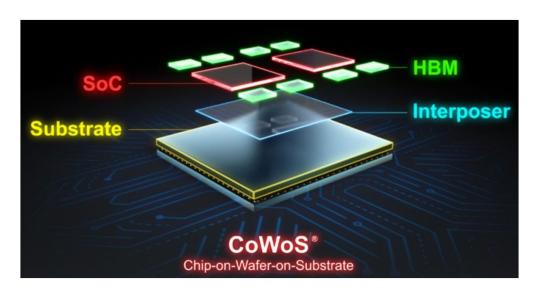
MORE than SILICON: CHIPLETS


- ☐ Different ASIC, Different TEAM
- ☐ Different Semiconductor and foundries combinable
- ☐ Cost optimization
 - ☐ Higher Yield (KGD)
 - ☐ HW Reuse
 - ☐ Dedicated technology for dedicated functions
- ☐ System Flexibility
 - customized and upgraded easily
- ☐ Reliable Test coverage
- ☐ Shorter Time to Market Modularity
- ☐ Performance scaling

MORE than SILICON: CHIPLETS

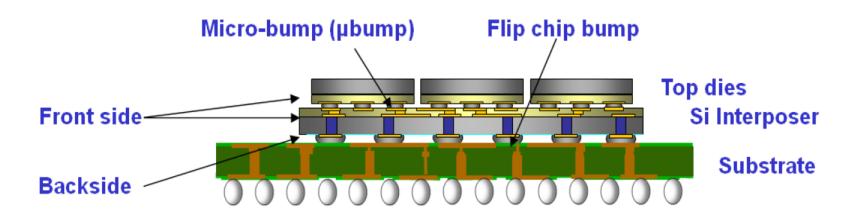


MORE than SILICON: COWOS


CoWoS (Chip on Wafer on Substrate), also known as TIS – Through Interposer Stack

- A 2.5D advanced packaging technology offered by TSMC
- Incorporates multiple dice side-by-side bonded using micro-bumps on a silicon interposer
- Uses TSVs on silicon interposer to connect to package substrate using C4 bumps

Front Side Interconnect – interconnect between top dies (e.g. HBM dies) to the silicon interposer using micro-bumps.


Backside Interconnect – interconnect between the silicon interposer (with TSV) to the flipchip bump and to the package substrate

MORE than SILICON: COWOS

CoWoS (Chip on Wafer on Substrate), also known as TIS – Through Interposer Stack

CONCLUSIONS – The REALITY

MORE ADVANCED TECHNOLOGIES ARE IN REACH

- ASSEMBLY PROCESSES BECOMING functional part of the component
 - Performance, Economics, Form Factor, Security of IP
- NRE's will become even more dominant for smaller projects

- CO-DESIGN and VERIFICATION becoming more important
 - New Tool flows
 - New Skillsets

QUESTIONS

Paul Malisse, Business Development, imec Paul.malisse@imec.be

mec

embracing a better life