

## **RF System-on-Chip use in the CERN Beam Instrumentation group**

Andrea Boccardi, slides from Irene Degl'Innocenti's presentation to the CERN 3<sup>rd</sup> SoC workshop – CERN SY-BI-BP

TWEPP 2023 - FPGA user group

#### The RF-SoC: what is it?





#### The RF System-on-Chip Technology





#### The RF-SoC: performance and cost comparison





#### The RF System-on-Chip Technology ADC Performance



|                                             | SNR<br>(dBFS) | SFDR<br>(dBFS)  | ENOB |
|---------------------------------------------|---------------|-----------------|------|
| AD9208 <sup>1</sup><br>(14b, 3 GSps)        | 60.2          | 78              | 9.7  |
| RFSoC<br>(12b, 4 GSps)                      | 58            | 74 <sup>3</sup> | 9.3  |
| TI 12DJ4000RF <sup>2</sup><br>(12b, 4 GSps) | 57            | 67              | 9.0  |

- 1. Analog Devices, AD9208 Data Sheet link
- 2. Texas Instrument, ADC12DJ4000RF Data Sheet, link
- J.E. Dusatko, "Evaluation of the Xilinx RFSoC for Accelerator Applications", in *Proc. NAPAC'19*, Lansing, MI, USA, Sep. 2019, pp. 483-486. <u>link</u>



#### The RF System-on-Chip Technology ADC Performance





#### The RF System-on-Chip Technology Comparison with discrete solution





#### The HL-LHC BPM development as a case study





#### HL-LHC Beam Position Monitor Upgrade What is a Beam Position Monitor?





#### HL-LHC Beam Position Monitor Upgrade New BPMs close to interaction regions

New BPMs in the immediate vicinity of interaction regions 1 (ATLAS) and 5 (CMS), where the two beams coexist within a single pipe





#### HL-LHC Beam Position Monitor Upgrade Directional Couplers

In a good directional coupler a signal is seen mostly at the upstream ports







#### HL-LHC Beam Position Monitor Upgrade Beam to beam distortion

### The presence of the other beam affects the measurement when:

- Short bunch crossing time
- Intensity of the other beam significantly higher

The distortion of the

beam signals due to

the presence of the

other beam must be

compensated for





#### **Resources Estimation for HL-LHC BPM Digital Acquisition Requirements per Stripline**

- Fast digital acquisition of 8 waveforms
  8 ADCs: > 2 GSps, > 8.5 ENOB
- Digital Signal Processing implementation
  - **Power** computation
  - Power Compensation algorithm (each waveform: 4 multiplications + 1 division + 2 square root) [IBIC21]
  - Beam Position Monitor functionality
    - Continuous log of averaged low-volume data
    - On demand storage of high-volume data
    - Calibration



- Logic
- Memory Size
- Memory Bandwidth
- Transmission Bandwidth



#### **Resources Estimation for HL-LHC BPM Resources estimation**

| Resources       | Required qty. | % RFSoC |
|-----------------|---------------|---------|
| ADCs            | 8             | 100 %   |
| DACs            | 8             | 100 %   |
| Internal memory | 30 Mb         | 48 %    |
| DSP             | 172           | 4 %     |
| LUT             | 20521         | 5 %     |
| FF              | 50644         | 6 %     |
| DDR             | 768 Mb        | 3 %     |
| DDR WR peak BW  | 22 Gbps       | 24 %    |
| Read-out BW     | 54 Mbps       | ~10 %   |



#### **Quick overview of the DAQ architecture (to be...)**





#### **RF-SoC learning curve and development time Zero to hero journey example**





#### **Example RFSoC 4-channel scope on ZCU111 evaluation board**

Price ~11 k\$



RFSoC XCZU28DR

**RF ADC connector** 



#### **Example RFSoC 4-channel scope on ZCU111 evaluation board**





#### **RFSoC Scope: Beam Raw Data Acquisition** Measurements of LHC Stripline



# Several raw data acquisitions for the HL-LHC BPM studies

- 4 channels at 4 GSps
- Memory per acquisition: ~2 GB
- Longest acquisition (<400 MB) single bunch for 128000 consecutive turns (more than 11s of observation)
- First Results: IPAC23-THPL119





I would like to say "none really: this was meant to be an excuse to start a conversation in this user group, and maybe a collaboration?"

But looks weird a presentation without conclusions, so:

- RF-SoC is a very promising technology
- The RF-SoC will be the core of the HL-LHC IR BPM system
  - It is estimated that for this relatively complex system we will not go beyond 50% of the available resources in the FPGA logic
- There are many resources online to get up to speed with designing for RF-SoC, still is a quite complex flow
  - As a reference 6 months to take a young digital engineer from virtually 0 to beam-tests (with a dev-kit!)





home.cern