

RFSoC Used as a Readout for Cryogenic Superconducting Circuits

Luis Ardila

Cryogenic Superconducting Circuits

Andreas Fleischmann (U. Heidelberg)

Metallic Magnetic Calorimeters

Highly precise, single particle detectors (1.6 eV at 6 keV)

Multiplexed with microwave resonators

Alexander Stehli (KIT)

Superconducting Quantum Bits

Building block for quantum computing

Key Requirements

- Operated at very low temperature (<100 mK)
- Interfaced with microwave signals 2 – 12 GHz
- Large signal bandwidth requirements < 500 MHz

Software Defined Radio (SDR) System Arch.

ECHo Experiment

The Electron Capture ¹⁶³Holmium experiment (ECHo)

- Investigates the upper limit of the electron neutrino mass
- Analyzes the energy spectrum in the electron capture process of ¹⁶³Ho
- Uses metallic magnetic calorimeters (MMCs)
- Parallel readout of **12.000 sensors** using microwave **SQUID** multiplexing approach
- 400 channels per readout line with resonances between 4-8 GHz

ECHo detector + µMUX:

Andreas Fleischmann (U. Heidelberg)

*Ho*¹⁶³ *spectrum:*

Comb generation Analog conversion

ECHo Readout Concept

Mixing to RF

RF TX

RF RX

 \mathbf{x}

FRD

Cryogenic domain

Mixing to baseband

Digital conversion

Channelization

Fluxramp demodulation

Event detection

Gartmann et al., J Low Temp Phys (2022)

Karcher et al., J Low Temp Phys (2022)

f/GHz

6 2023/10/02 Luis Ardila – RFSoCs for Quantum Sensors & Qubits

ECHo Readout Concept

Analog conversion RF TX Mixing to RF MUX Cryogenic domain

RF RX

 \mathcal{X}

Mixing to baseband

Comb generation

0

Digital conversion

Channelization

Event detection

Comb generation

ECHo Readout Concept

Mixing to RF

RF TX

RF RX Mixing to baseband

Digital conversion

Event detection

Digital Signal Processing

Room-temperature emulation

Amplitude Noise

Measurement procedure:

- Generation of a single tone
- Downconversion of carrier signal
- Signal PSD of noise

Results:

- room-temperature loopback shows lower noise than with cryogenic interface
- SDR is not the limiting factor

Advantages of RFSoC

- Higher sampling rates of DACs
 - Filtering images close to fs/2 is possible with lowpass-filters
- Simplified interface to converters (AXI-Stream)
- Less resource consumption (no JESD or other protocol required)
- Converters are reconfigurable at runtime

Poster on Thursday by R. Gartmann: Evaluating the RFSoC as a Software-Defined Radio Readout System for Magnetic Microcalorimeters

Future SDR - DirectRF Architecture

- With increased bandwidth, analog mixing is no longer required
- Just some filtering is needed
- By using upper Nyquist zones, even higher frequencies can be reached

Xilinx ZCU216 RF eval board

V. Stümpert and R. Gartmann

IPE tooling environment for ZynqMP & RFSoC

All-in-One system for quantum sensor readout

- Include VNA, Oscilloscope and Spectrum Analyzer
- Automated resonance search with VNA
- IQ-Imbalance correction of frequency comb
- Dynamic tone generation with crest factor reduction
- Self-calibration and system configuration
- Monitoring of signal quality

Conclusion

- FPGAs have evolved into very complex heterogeneous devices
 - Zynq US+: FPGA + CPU & Peripherals
 - RFSoC: FPGA + CPU + **DACs & ADCs**
- Enables high **functional integration** (including control, calibration, and test software)
- Giant leaps in **tooling required** to leverage the full potential
- RFSoCs are much easier to operate vs. discrete DACs/ADCs (JESD, clocks, synchronization)
- RFSoC performs similar to custom ECHo DAQ hardware
- Higher sampling rate of RFSoC DACs improves SFDR and increases measurement accuracy
- For ECHo, the noise level of DAQ is below cryogenic signal path

Acknowledgments to the IPE-SDR group

Research Interest: Next-Gen DAQ Systems

ECHo readout electronics

Qubic Experiment

Goal: Measurement of the B-mode polarization of the Cosmic Microwave Background (CMB) radiation

UNSAM

UNIVERSIDAD NACIONAL DE SAN MARTÍN CONICET

ECHo electronics is suitable for QUBIC. However, evaluation of Gen3 RFSoC devices is interesting and ongoing

QiController - System Architecture

Qubit characterization, full-stack ownership, defining the classical-quantum interface.

ServiceHub

- Plugin based
 - Modular
 - Load at runtime
- gRPC communication
- Infrastructure
 - Logging
 - Devicetree access
- Platform Entities
 - PL modules e.g. Digital Unit Cell
 - PS modules e.g. DMA

Karcher, Gebauer et al., IEEE TNS, 2021

Microwave-SQUID-Multiplexer

Acknowledgments to the IPE-SDR group

Group Leader

• Oliver Sander

Postdocs

• Luis Ardila

Doctoral Students

- Luciano Ferreiro
- Marvin Fuchs
- Manuel Garcia
- Robert Gartmann
- Torben Mehner
- Timo Muscheid
- Juan Salum
- Lukas Scheller

Master & Bachelor Students

