Digital Verification for
FPGA and ASIC
Designers

A

lo\

DOULOS

Delivering KnowHow

Digital Verification for
FPGA and ASIC N

Designers I.\

DOULOS

B W . N

www.doulos.com

Digital Verification for
FPGA and ASIC
Designers

A

DOULOS

Copyright © 2015-2023 by Doulos. All Rights Reserved

All intellectual property rights, including copyright, patents, design rights and know-how in or
relating to the course or course materials provided or made available in connection with the

course remain the sole property of Doulos Ltd or their respective owners and no copies may
be made of course materials unless expressly agreed in writing by Doulos Ltd.

All trademarks acknowledged.

Doulos takes great care in developing and maintaining materials to ensure they are an
effective and accurate medium for communicating design know-how. However, the
information provided on a Doulos training course may be out of date or include omissions,
inaccuracies or other errors. Except where expressly provided otherwise in agreement
between you and Doulos, all information provided directly or indirectly through a Doulos
training course is provided “as is” without warranty of any kind.

Doulos hereby disclaims all warranties with respect to this information, whether express or
implied, including the implied warranties of merchantability, satisfactory quality and fitness
for a particular purpose. In no event shall Doulos be liable for any direct, indirect, incidental
special or consequential damages, or damages for loss of profits, revenue, data or use,
incurred by you or any third party, whether in contract, tort or otherwise, arising for your
access to, use of, or reliance upon information obtained from or through a Doulos training
course. Doulos reserves the right to make changes, updates or corrections to the
information contained in its training courses at any time without notice.

Doulos Limited Doulos

Church Hatch, 22 Market Place, 6203 San Ignacio Avenue, Suite 110,
Ringwood, Hampshire, BH24 1AW, UK San Jose, CA 95119, USA

Tel: +44 (0) 1425 471223 Tel: 1-888-GO DOULOS

Email: inffo@doulos.com Email: info.usa@doulos.com

DOULOS
Contents

(0] 0] 1] 0] £ 7S PP 7
Current Verification LandSCaPecoovviiieeeieeeeeeeeeee e 9
Verification APPIrOACNESuuuuiiiiiiiiiiiiiiiiiiti e 9
Simulation and TeSthENCNEScevviiiiii e 13
L0701V T 2= To TP P PP PPPRPPPPPRPPPTN 20
Formal VerifiCatioNcoooiiiiiiiie et e e e e e e eeenees 23
Class-Based SystemVerilog Verification ... 26
What iS SYStEMVETIIOQ? ... 26
SysSteMVErilog CIASSESccovviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 31
RV (0o I] (T o = Lo = 38
Constraints and FuNnctional COVEragecooeevivieeeiiiiiiii e ee et e e e e e e eeeeaens 41
Universal Verification Methodology (UVM)......cccoooiiiiiiiiiiiiieeececeeevicee e 44
WRAL IS UVM? ettt e e e e e e e e e e e e e e nnnneees 44
UVM HEllo WOTId.......cooeeeeeeeeeeeeee 48
DUT INEEITACE ... 53
Sequencer-Driver COmMMUNICALIONuuuiiiiee i e et e e e e e eeeanns 57
Formal Verification for Non-SpecialiStSccooviiiiiiiiiiiiiiii e, 62
Learning to USE FOIMAluuuiiiiii et e e e e eenaees 62
AV To T d (o] 0 1= 1= S 63
TacKIiNg State SPACEcooeeeeieieeecie e e 67
Under-constraining versus OVer-constraiNingcceeeveeeeeeeeeviiiiiieeeeeseeennnnns 71
USING FOMMAL......oiiiiiii et e e e e e e e e e e e e e eeeennns 76
Conclusions and RecommendationS...........cooovvieiieiiiii e 77

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 7

Workbook

DOULOS Delivering KnowHow www.doulos.com

PrincipaliMembeg®r Technical Staff

Notes

8 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
Current Verification Landscape

Verification Approaches

Current Verification Landscape
A, e @ N
[>Verification Approaches

® Simulation and Testbenches

* Coverage

®* Formal Verification

What is Verification? Lo\
DOuULOS
* Verification: Did we build it right? A
])) — A+B ?
* Check that the implementation of a device B + 3
or system behaves as required by its

specification)
_— design process

Specification? N
Reference modﬂ

\ \

verification

environment -
Verification
environment

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 9

Workbook

Verification Techniques

Acceleration

3 Simulation
+ Emulation

Simulation

Transaction Level
Modelling

Simulation

Constrained
Random

A

DOULOS

Verification

Formal
Verification

Property Equivalence
Checking Checking
Dynamic
Formal
Simulation Simulation
Formal Formal

Intelligent
Testbench

L

List has not changed for years...

* |EEE 1076 VHDL
* IEEE 1850™ PSL

* |EEE 1364 Verilog

* |EEE 1647" e

* ISO/IEC 14882 C++
* |EEE 1666™ SystemC

* TcliTk, Python, Perl

Languages for Verificatio

A

DOULOS

Crude Caricature

FPGA, RTL, Europe, Mil-Aero

ASIC, RTL, USA/RoW

* IEEE 1800™ SystemVerilog ifieg tion
Most Popular choice

Advanced Hardware verification

Modeliing, verification

Virtual hardware prototypes for S/W dev

Seripting

10

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

DOULOS

Approaches to Verificatio

Ad hoc
Just program the FPGA
§ Write a basic VHDL/SystemVerilog test bench and simulate
= Use C/C++, Tcl, Python or Perl to augment verification environment
Constrained Random
Transaction Level Modelling
) . . Separate verification team
% Acceleration, Emulation, Prototyping
»
Formal
Disciplined
[%
ugen . a . <~
Verification in the Design Pro &/
DOULOS

Specification

RTL

Synthesize

Gates

|

Silicon

* Each step in this process must be verified

lo\

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 11

Workbook

12

A

DOULOS

Verification Plan

* What are we going to verify? (Requirements, objectives)

* How are we going to do it? (Design of test stimulus)

* How do we measure success? (Observations)

",

The Verification Plan specifies the verification tasks and effort ‘

* If it's specified it should be verified!
* Identify an appropriate way to test each feature or
statement in the specification
* directed or constrained-randomisedtesting
* Create constrained random stimulus that will execute that
feature and the data ‘self checking' (aka scoreboard) is

correctly implemented by the design

A\

DOULOS

Example Verification Plan

Specification Test descriptions

1. Write 1" to FAIL register
2. Check that NBG goes to
'1" wiithin 2 clocks

1. Change the FAIL bit
value In the register .

2. Generate and send data

using good and bad

checksum values

* In this example, one specification part is verified using a defined test

* This could be done by simulation or by formal methods

* For the second part, (constrained) random data is generated

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

A

DOULOS

Linting Tools

* Locating errors or potential errors in HDL code can save a lot of
verification effort later

® Simulators and formal tools should find errors ... eventually

* A Linting Tool finds common errors quickly and automatically

* Example:
always @ (Select)
if (Select)
¥= Aj} s
® Verilint
else * HAL
_n. * LEDA
Y=B; .
Warning: Incomplete event list

Simulation and Testbenches

Current Verification Landscape

I A, - T .
* Verification Approaches

[>Simulation and Testbenches
® Coverage

* Formal Verification

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 13

Workbook

‘v A
la\
DOULOS
* Execute a model of the system
* A simulation is only as good as the model
* The more accurate the model, the longer the simulation time

* Cannot simulate everything — not enough time

e /curocy
Spec

* Widely used:
* simulation is intuitively attractive, looks like the real thing
* mature, familiar tools

* excellent debugging

DOULOS
Test vectors Output vectors
11001001 000010
01001010 010011
00001001 000010
01110110 100100
01100110 001000
01001001 110010
01001110 Verilog 000011

* #1 tool for functional verification
* Vectors must be created:
* write a program to do it (“directed”)
OR
* compute them using constrained-random techniques

(requires automated checking of output)

14 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Results from Simulation

* Only an approximation of reality

* Simulation requires stimulus

A

lo\

DOULOS

* Semantics of HDL and simulator define simulation behaviour

* quality of test is determined by quality of stimulus

and the stimulus

[Results are determined by both the designj

* Response must be verified against expected behaviour

* General problem: Simulators are never fast enough!

fo\

DOULOS

Basic Testbench

#10 selA = 1'bl;
$10 A = 1'b0;
#10 selA = 1'b0;

Generate
stimuli

Often written by the designer

Unstructured grey box test

Device Under Check
Test (DUT) Response
Testbench

Inspect waveform?

A

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

15

Workbook

16

A

DOULOS

Testbenches

* A testbench sends stimuli to the Device under Test (DUT) and
collects responses from the DUT

* Usually designed to be self-checking, i.e. it automatically
checks the DUT's responses for correctness

* Atestbench is therefore the environment seen by the DUT

® The testbench must provide all signals needed for the DUT
to operate

® The testbench can be written in:
® the same HDL as the DUV
* another HDL, or
* a specialised Hardware Verification Language (HVL)

® Testbenches can use the entire range of the language — no need
to stick to a synthesis subset

A\

DOULOS

Structured Testbench

* Stimulus can be read from a file or can be created using
constrained-random generation

® Whatever stimulus is applied, the DUT's output should
be checked automatically

* Prefer monitoring/checking processes that work

correctly for any stimulus

(OK for any stimulus)

— o Checker I}Tg
ile
GEOME Compare
results _-8
Calculate
expected
results

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

* Example - an arithmetic function:

antity Arithmetic is

port {
A, B : in UNSIGNED(7 downto
F + out UNSIGNED(7 downto

and entity Arithmetic:

0):
(DR

:
- . /(Boundaries)

Explore
around the
boundaries

Boundary Conditions & Corner C

* Exhaustive testing is impractical, so which tests to include?

A

lo\

DOULOS

A

DOULOS

* Verification engineer's
experience is important
in choosing corner
cases

* When using formal
verification, the story is

A

very different - all cases
explored automatically

00000000
11111111
00000000
11111111

00000000
00000001
00000001
00000001
1M1
00000001
11111110

Q0000000
Q0000000
(ARARRERI
NN

Q0000001
00000000
Q0000001
EARRRRRE
Q0000001
11111110
Q0000001

* Example

* Random test generation is easy

* Constrained random generation

Constrained Random Test

* Writing many different tests is difficult

* In the worst case, need every combination of inputs
* Choose a representative sample — how?

* Unconscious bias towards good data — may ignore unlikely
but fatal combinations

* Random number generation builtin to most languages
* But... many random combinations should not occur

* Random, but subject to certain constraints

* Meaningful sequence of opcodes, but random data and
random addresses within a certain range

“Directed” tests

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

17

Workbook

DOULOS

Testbench Automation

Errors

Constrained-random

test vectors Results

(Principles of testbench automation:)

* Constrained-random generation of test vectors
® Automatic checking of results

* Functional coverage to measure verification completeness o

A

DOULOS

Simulation Acceleration

* Simulation is slow; how to make it faster?

* Less detailed simulation — may not be acceptable

* A simulation typically runs on a workstation
* More powerful workstation
* Distribute simulation between workstations
* Central compute server — 1 per office
* Compute farms — 1 per corporation

* Can become expensive!

21

18 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

lo\

DOULOS

DOULOS

Modelling Levels

* If the complete DUV is modelled at the lowest level, the
simulation will be slow

¢ Ideally, model each part of the DUV only in enough detail to
verify that part of the specification that's being simulated

® Example

* If we model a data transfer operation, every bit change on
every pin will generate a simulation event

® Solution

* Model the data transfer as a single transaction — one event

® Thisis Transaction Level Modelling (TLM)

22

Transaction Level Modellin®

DOULOS

Functional

Model

write (address,data)
read (address,data)

Channel

Functional

Model

* 100+ X faster simulation!

23

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 19

Workbook

Coverage

Current Verification Landscape
[E— A B . 9
* Verification Approaches

® Simulation and Testbenches

[>Coverage

* Formal Verification

[\

DOULOS

24

Coverage

A

DOULOS

* “Coverage” is used in different ways —

® Usual English meaning

“Have we covered everything in the specification?”

* Technical terms

* Code Coverage — how much of the code have we exercised
during simulation?

* Functional coverage — how much (expressed as a percentage)
of the functionality described by the specification have we
exercised during simulation?

25

20 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

Code Coverage Lo\

DOuULOS

Device under test

vl if Reset = '1' then
Test vectors () Cnt <= "00000000"; OQutput vectors

iE-Q c1cif Rising edge (Clock) then
11001001 9 if Enabkle = '0' then 000010

1 null;
g;gg:gg? 8 elsif Load = '"1" then gg%:;

2 Cnt <= Unsigned(Data);
01110110 oo | eanedbeRmy > 100100
01100110 6 if UpDn = '1' then 001000
01001001 6 Cnt <= Cnt + 1; 110010
01001110 0 else 000011

0 Cnt <= Cnt - 1:

end if;
end 1f;
Not yet executed — end if;
might be a bug (Thisis line coverage)
here!
* Doesn’t prove correctness!
26

A

DOULOS

Sample-Based Functional Coveé

class instruction;
bit [2:0] opcode;
bit [1:0] mode;
shortint unsigned data;

covergroup cg @ (posedge clk);

coverpoint opcode;

coverpoint mode;
coverpoint data { \'
18

bins tiny 81 = { [0:71 }; 13 16
bins moderate[8] = { [8:255] }; 7
bins huge [8] = { [256:65535] }; I I . I
} 00 01 10 11
endgroup

andelass: instruction S‘y‘StE‘ITI VE‘FilOQ

27

A

lo\

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 21

Workbook

VA

DOULOS

Code vs. Functional Coverad

low C Functional coverage) high

high * More tests required * Verification goals
i to exercise new achieved
scenarios
()
(o]
o
(V]
=
Q
o
<
8 ® There’s much more * Review your functional
work to be done! coverage model - more
s coverage points are
low needed

28

Verification State Space Covers {;

DOULOS

Bounded formal

Directed tests Random tests Static formal

mE

.
n |

Directed testing relies on the patient engineer

* Random tests use CPU time/knowledgeable engineer to increase coverage
* Static formal verification (property checking) is exhaustive of the state space
* Controlcircuits best use

* Bounded formal verification is locally exhaustive, but incomplete

28

22 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
Formal Verification

Current Verification Landscape
A, e @ N
* Verification Approaches

® Simulation and Testbenches

* Coverage

[> Formal Verification

r

/&

DOULOS

30

Formal Verification ‘ 1;\

DOULOS

* The alternative to simulation is mathematical proof

* Usually known as Formal Methods
* Covers a wide variety of techniques

* Formal methods do not need stimuli — can be considered to be
exhaustive

* But not everything can be checked — best suited to state
machines

* Why not always use formal methods?

* State explosion problem — every possible sequence of
states

* Two basic techniques:

* Equivalence checking — do two versions of the system have
the same functionality

* Property checking — does a system satisfy certain
properties?

£l

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 23

Workbook

24

Specification

When Is Formal Verification

Confirm correctness

Property checking | °F 95190

. A

Lo

DOULOS

Synthesi
of transformations
Gateh.s of netlist

Confirm correctness

- - of synthesis
Equivalence checking

Confirm correctness

l Equivalence checking

|

Placed cells and routing

32

Equivalence Checking

(Equivalence Checking)

VHDL VHDL
Design I Design
Under ‘ Under

Test [—— Test

Gatelist

Verilog
Verilog

*® Using formal methods — no simulation

DOULOS

33

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

A

DOULOS

Property Checking

Properties

VHDL (Property Checking)
Design assertA> B

Under

Test
: Property languages
Verilog ok el

® Using formal methods — no simulation

® Exhaustive state space coverage

34

.
£

* An assertion is an instruction to check a property of the design

* Can be checked by a simulator or by a property checker

assert output1 > output2

* Equivalent to combinational logic

(Complex Temporal Checks)

when input1 rises check that output! > output2 after 2 clocks

* Equivalent to a state machine

35

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 25

Workbook

Class-Based SystemVerilog Verification

What is SystemVerilog?

Class-Based SystemVerilog Verification
[AR - TR .
[>What is SystemVerilog?

® SystemVerilog Classes

*® Virtual Interfaces

*® Constraints and Functional Coverage

38

What is SystemVerilog v{a\

DOULOS

* The world's first HDVL, Hardware Design and Verification
Language

* |EEE Std 1364-2005 Verilog and
* |EEE Std 1800-2005 SystemVerilog

merged to form
* |EEE Std 1800-2009 SystemVerilog
* |EEE Std 1800-2012 SystemVerilog
* |EEE Std 1800-2017 SystemVerilog

* SystemVerilog RTL, aka concise RTL
* SystemVerilog Assertions, aka SVA

* SystemVerilog Testbench, or class-based verification
37

26 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

A

DOULOS

SystemVerilog Language Featt

C-style data types & control - enum, struct, typedef, ++, break, return
&V" ésa Synthesis-friendly "concise” RTL notation
< éf Packages
Interfaces

.

04;8’ SystemVerilog Assertions

I Clocking blocks (synchronization between DUT and test bench)
Object-oriented programming - classes
& | Constrained random stimulus generation
g:&n& Functional coverage
~ Dynamic processes, dynamic arrays, queues, mailboxes, semaphores

. Direct Programming Interface (DPI) - calling C from SystemVerilog

Extensions to VPI
< 38

B,
Caveats AN
DOULOS
® C-like control constructs and data types
= .

* VHDL-like package and import
* Assertions

* Non-portable constructs - lll-defined

Classes

® Constraints and coverage based on classes ; Class-based
* Built-in types - strings, queues, maps verification

Virtual interfaces

CUsed by standard verification methodologies)

39

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 27

Workbook

4-State and 2-State Types D Lo\
DOULOS
* 4-state types
Signed Unsigned Widih
logic signed logic 1 bit
logic signed [n:m] | logic [n:m] N bits
* Z2-state types (variables only, not wires)
Signed Unsigned Width
bit signed bit 1 bit
bit signed [n:m] | bit [n:m] N bits
byte byte unsigned 8 bits
shortint shortint unsigned 16 bits
int intunsigned 32 bits
longint longint unsigned 64 bits
40

typedef struct {

bit b;
int i;

logic [7:0] v;
} mystruct_t;

® Aggregate of dissimilar data items, just like C
* Best used with typedef

mystruct_t s; ¢

s.b = 1;

Seiim= =8

n

S.V

s = '{1, -8, 8'hff};

8'hff;

_—{ Variable

DOULOS

CAssignmenl pattern)

41

28 Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

lo\

DOULOS

DOULOS

Interfaces

« Simple interface = bundle of wires/vars

interface APB;
logic PCLK, PSEL, PENABLE, PWRITE;
logic [15:0] PADDR;
logic (31:0] PWDATA;
logic [31:0] PRDATA;
endinterface

module Master (APB iport, ...);

endmodule Must use ANSI-style port list)

42

ol

DOULOS

Immediate and Concurrent Asse

* Procedural assertion — sampled procedurally

always ...
assert (EXPRE_.ESION }:

_____J&Ordinary SystemVerilog expression)

* Concurrent assertion — condition is usually sampled on clock edge

assert property (EBiposedge Clock) CONDIT{ON)i |

(SystemVerilog property)

* Condition is only tested when pre-condition has been matched

@ (posedge Clock) PRECONDITION |-> CONDITION):
4

L3
L SystemVerilog sequence) .’ p- Implication operator) 2

s
assert property (|

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 29

Workbook

A

DOULOS

Concurrent Assertions

* Check or prove the property

label: assert property (FPROPERTY) ACTION BLOCK; ‘
4

* Collect functional coverage information

label: cover property (FROPERTY) STATEMENT;

* Make the property an assumption for formal

label: assume property (PROPERTY);

44

Temporal Behaviour

DOULOS

* Properties and sequences describe temporal behaviour
* “Temporal" means the sequence spans more than one clock cycle

C Concurrent assertion)

assert property (,—*A—

@ (posedge Clock) (a ##1 b) |-> (d ##1 e)
); T —)

& Property)

* Termination mid-way through matching a sequence
® (Discharges property’s obligation to hold for PROPERTY)

@ (posedge Clock) disable iff (TERMINATE) PROPERTY);
4

L(Termination operator)

45

30 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
SystemVerilog Classes

Class-Based SystemVerilog Verification
[A Be. . N
* What is SystemVerilog?
[> SystemVerilog Classes
*® Virtual Interfaces

® Constraints and Functional Coverage

46

| F
SystemVerilog Classes N
DOULOS
package Bus_pkg; C Always put classes in a package)

typedef logic [15:0] T addz;

typedef logic [15:0] T data;

typedef enum bit (dir Rd, dir Wr} T dir;

class Bus_trans;

(Class defines a transaction object)

int 1555
T dir dir; :
T addr addr; C Data members or class properties)

T data data;

function void print; Method

string kind = (dir==dir Rd) ? "Read" : "Write";
$display("$s cycle #%0d: A=%h, D=%h",
kind, 1D, addr, data);

endfunction : print
endclass : Bus_trans

endpackage : Bus pkg

47

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 31

Workbook

32

A

DOULOS

Object = Instance of Class

module use Bus trans; references

import Bus pkg::*; 1 E]
Bus_trans tl, t2; tZE]
initial begin

+ Variables of class type store references (handles) to real objects
+ Initialised to nul11 (reference to no object)

A\

DOULOS

Object = Instance of Class

module use Bus trans;
import Bus pkg::*; t IE\'
Bus_trans tl, t2; QD
initial begin D E'
tl = new; di’
addr @
data [oo |

= Variables of class type store references (handles) to real objects
« Initialised to nul1 (reference to no object)

« Create objects using new - data members get their usual default values

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Object = Instance of Class

module use Bus trans;
import Bus pkg::*;
Bus_trans tl, t2;
initial begin
£l = new;
tl.data = 16'h1234;

A

lo\

DOULOS

=
e[] ID [0]
dir [dir_Rd
addr [xooxx |
data

« Variables of class type store references (handles) to real cbjects

+ Initialised to null (reference to no object)
= Create objects using new - data members get their usual default values

* Access data members, and call methods, in existing objects using dot notation

DOULOS

module use Bus trans;
import Bus pkg::*;
Bus_trans tl, t2;
initial begin
£l = new;
tl.data = 16'hl234;
t2 = t1;

Object = Instance of Class

e 4

fjic=
e[34— i[o]
dir [diz Rd
addr [xooxx |
data [1234 |

« Variables of class type store references (handles) to real objects
+ Initialised to null (reference to no object)
* Create objects using new - data members get their usual default values

Access data members, and call methods, in existing objects using dot notation

/A

DOULOS

L

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

33

Workbook

34

Object = Instance of Class

modula use Bus_trans; references

DOULOS

import Bus pkg::*;

) = — |
Bus_trans tl, t2; o E_/__,
initial begin D [0]

tl = new; dir
t1.data = 16'h1234; addr [xoxx |
2 a2

t2.data = 16'habed;

+ Variables of class type store references (handles) to real objects
« |Initialised to null (reference to no object)
+ Create objects using new - data members get their usual default values

+ Access data members, and call methods, in existing objects using dot notation

o,

A

DOULOS

Object = Instance of Class

module use Bus_trans;
impoxt Busproi:ti w[J— (obiect)
object
Bus_trans tl, tZ; 1 E___/__a-
initial begin ID El

£l = new; ldil‘
t1.data = 16'h1234; addr [xoxx |

t2.data = 16'habcd;
tllprintlll:(Method call >|Read cycle #0: A=xxxx, D=abed

+ Variables of class type store references (handles) to real objects
« |Initialised to null (reference to no object)
+ Create objects using new - data members get their usual default values
* Access data members, and call methods, in existing objects using dot notation

* Methods act on the object through which they were called
53

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

lo\

DOULOS

DOULOS

Initializing Objects

module use Bus trans;
import Bus pkg::*;
Bus_trans t3 = new; (Create object with default initial values)

* new allocates memory and calls default constructor

class Bus_trans;
function new; ~—(Explicit constructor new. No return type)
addr = 0;

dir = dir Wr;
$write("Created new ");
print(); o—CCaII a method from within the class)

endfunction : new (print myself

54

AN

DOULOS

Constructor Arguments

» Like any function in SystemVerilog, constructors may have arguments

function new (T dir direction);

addr = 0;
dir = direction;
$write ("Created new "); print();

endfunction : new

new; ERROR

Bus_trans t4

Bus trans t4 = new(dir Rd); Read

+ Arguments may have default values (no overloading, though)

function new (T dir direction = dir Rd);

Bus_trans t5 = new; Read

Bus_trans t6 = new(dir Wr); Write
55

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 35

Workbook

36

class Bus_trans;
statiec int next ID;

Randomized Data Member

£\

DOULOS

const int ID;
rand T dir dir;

(any data member can be declared rand)

rand T addr addr;
rand T data data;

function new;
ID = next ID++;

(u nigue serial number)

endfunction : new

function void print;

endclass : Bus trans
Bus trans tR; tR
repeat (3} begin

tR = new;

void' (tR.randomize ());
tR.print();

W
acar (5267
data

end(randomize an existing object

Write cycle #0: A=35eT,
Write cycle #1: A=b267,

D=4aif
D=04e3

class Bus_trans;
statiec int next ID;

Randomized Data Member

const int ID;

(any data member can be declared rand)

rand T dir dir;
rand T addr addr;
rand T data data;
function new;

ID = next ID++;
endfunction : new

function wvoid print;
endclass : Bus trans

Bus_trans tR; tR
repeat (3} begin
tE = new;
veid' (tE.randemize());
tR.print();

D [o]

IZI
dir
addr
data

b267
0de3

Q‘I

jm

IIH
=

end(randomize an existing object

Write cycle #0: RA=35e7, D=4a8f
Write cycle #1: A=b267, D=04e3
Read cycle #2: A=1040, D=93c2 5

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

Test Harness and Testbenc

DOuULOS
+ Test harmness is a module containing:
* the DUT instance and connections to its ports
» clock generator and other support structures
(System)Verilog test harness
. DUT
stimulus Stin input output Rei..‘l checker
generator 1\ . J software
clk
A
clock events But we want the testbench
to be built using classes!
SystemVerilog testbench (verification environment) |

58

A

DOULOS

Lifetime and Persistence

* Module, interface and program instances:
- created at elaboration, before simulation begins
= hierarchy structure controlled by parameters
= structurefinstances cannot be changed dynamically

« Objects of class type:
= created dynamically, during simulation, using new
= structure controlled by run-time activity
= can be created and d?;.s\throyed at any time

s : : : N
(verification environment) (fransaction data objects)

« typically constructed at time zero + created in large numbers during the

« structure probably remains simulation

unchanged throughout simulation + destroyed after use (unless logged)
59

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

A

lo\

DOULOS

37

Workbook

module TE top;

import TB pkg::¥;

TB_env tb; tb testbench
initial begin object
th = new;
tb.run(); D
end "'[::::]
endmodule : TE top

class TB env;

task drive Stim(input bit data);

@(posedge{harnesa.clk]

endtask

Creating the Testbench

harness|.Stim <=7;§f§7-\\\\\\\\:\

A

DOULOS

module harness;
logic Stim, Resp;
bit clk;
Sys_Top DUT (.*);

endmodule
Test harness module
DUT
input output
A

(ol

Our entire testbench class is
hard-coded for the name of
the test harness!

Stim Resp
—— input output }—

60

Virtual Interfaces

38

* What is SystemVerilog?
® SystemVerilog Classes

[:>Virtual Interfaces

[\

DOULOS

Class-Based SystemVerilog Verification

® Constraints and Functional Coverage

- T .

&1

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Virtual Interface y /;\

DOuULOS
class TB env;
wvirtual TE hook hook; interface TE hook;
function new(virtual TE hook h); legiec Stim, Resp;
hook = h; - bit clk;
no o endinterface
endfunction : new interface TB_hook

clk
Stim

task drive Stim(input bit data);
@ (posedge hook.clk)

hook.5tim <= data; =S

endtask e interface instance
- o + Where is this
instantiated?
« Testbench class now OK for any .
i - ; . * How does it link
instance of a TR hook interface object to the DUT?

« Link TB object to interface
instance at runtime

g2

A

Building a test harness

DOULOS
Interface contains all
signals required by Racnens
testbench
interface TB hook (input bit clk);
wire Stim, Resp; TB_hook clk Svm_Top
endinterface Stim Stim
Resp | Resp
module harness; DUT intf / DUT
bit clk;

TB_hook DUT_intf (.clk);
Sys_Top DUT (

Hierarchical
el el connection
.Stim (DUT~intf.Stim}L’,,~’ . DUTinstance
.Resp (DUT_intf.Resp),

+ DUT connections

+ clock generator

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

Copyright © 2015-2023 by Doulos. All Rights Reserved 39

Workbook

40

A

DOULOS

Connecting the virtual inte

class TEB_env;
virtual TE hook V;

function new (virtual TE hook V, ...};
this.V = V;

constructor

| endfunction

Cietat bes
initial begin

tb = new(harness.DUT intf, ...);

TB_hook DUT_intf (.clk);
Sys Top DUT (

84

Testbench Static Structure y {;\

DOULOS
» Test case (TB_top) and test harness are the only static instances
ha.nmss@
module TB top;
4§ t TB_p kg::k TE_hook o L
or BT) |
TEP th; static T stm a
LS 185 tb simulation Stim
initial begin structure /’ Besp Resp
th = new(...);: DUT
DUT._intf
th.run();
and
endmodule : TE top

S
ackage TB pkg;

P g _DKg hookllzl
class TE env; I:l

wvirtual TB hook hook; dynamically constructed
testbench object

85

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Constraints and Functional Coverage

Class-Based SystemVerilog Verification
[A - THRA. .
* What is SystemVerilog?

* SystemVerilog Classes

* Virtual Interfaces

[:>Constraints and Functional Coverage

/&

DOULOS

L]

Constrained randemizatio

class Bus trans; Sy*latem 233 ROM at
rand T dir dir; Ow addresses
rand T addr addr; ; dir
- "{ constraints must be named
rand T data data;() Rd Wr
constraint rom_area { FFFF x| x
dir == dir Rd; addr <= 1l&"hVFFE; 8. o
I FFF
\(no semicolon!)(semicolon!) X
endclass : Bus_trans 0000
+ But now there will be no access to highaddresses! dir
. L ; Rd Wr
+ Solution: use an implicafion constraint FEEF
constraint low adrs is ROM { 2 8000
(addr <= 16'hJEFF) -> (dir —= dir Rd); |5 TFFF
X
) 0000
&7

A

lo\

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 41

Workbook

42

A

Creating an Extended Clas

DOULOS
class Bus_trans; General, re-usable
rand T dir dir; Better not to mix
rand T _addr addr; these together...
rand T data data; \

(Specific to the current DUT)

constraint low adrs is ROM {
{addr <= 16'h7FFF} -> (dir == dir Rd):

+ Don't modify the original class definition

+ Instead, extend it: (Everything in the base class, plus...)

class Mem map trans extends Bus_trans;
constraint low adrs is ROM {
{addr <= 16'h7FFF) -> (dir == dir Rd):

88
oy /
DOULOS
* What you write + What you get
Bus_trans Mem_map_trans ...Is aBus_trans
addr: T_addr addr: T_addr
data: T_data ... data: T_data ...
new() area. enum{ROM RAM,|O}
copy(): Bus_trans new()
psprint(): string copy(): Bus_trans
psprint(): string
Inherits constraint ..
is-a...

Mem_map_trans *« A Mem_map_trans object can be

area. enum{ROM.RAM.IO} used anywhere a Bus_trans object

is appropriate

constraint ...

69

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Functional Coverage

class Monitor;
rand legic [2:0] opcode;
rand logie [1:0] mode;

covergroup oq;

endgroup

function new;
cg = new;
. e

task body: H\'“«..

coverpoint opcode; —m |

coverpoint mode;
option.per instance N

DOULOS

, (obimig)

10

* Covergroup can be in a module, interface or class

Coverage hole
T 18

13 16
J_Ij_l

0 1 2 13
(Does not count X or Z)

=
.+ Walt for f3-”"““"""J't’-“-*""‘\(ls.."lus.t instantiate covergroup in constructor.f)

o . samnple ()

. *—(Built-in method

o

@plawruund
Sewpin pin by

Apouos
* Languages §
brans

Tentbanch « Dusigs T toss

UVM OV ©

Tmpart Th_phgi et

haraeas ™

Th_eav th;

o i o |
] Lse o e unm . Virsss Sdebces
() s ree m st rerpt
03 Cwn TP b o IR

playground
Practice - Share - Learn

Simulate your code in a web
browser

3062 wewn 304 2 bhex

g terce 15

) Dowreane bies e an

caing 3 v irtadace

» Examphs

(https://www.edaplayground.com/)

m

Digital Verification for FPGA and ASIC Designers Workbook 1.0

DOULOS

Copyright © 2015-2023 by Doulos. All Rights Reserved 43

Workbook

Universal Verification Methodology (UVM)

What is UVM?

Universal Verification Methodology (UVM)
[E— A B . 9

[>What is UVM?
* Getting Started with UVM

* Should | use Formal instead?

Tz

What is UVM? p /A

® The Universal Verification Methodology for SystemVerilog
*® Supports constrained random, coverage-driven verification
* An open-source (Apache 2.0) base class library

® An Accellera standard and the IEEE Standard 1800.2

® Supported by all major simulator vendors

73

44 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

DOULOS

Why UVM?

® Best practice

¢ Consistency, uniformity, don't reinvent the wheel, avoid pitfalls

® Reuse

® Verification IP, verification environments, tests, people, knowhow

74

A

DOULOS

Versions of UVM

* UVM originally based on OVM 2.1.1

* UVM-1.2, June 2014

* |EEE Std 1800.2-2017 (Free from IEEE)
* UVM 2017-1.0 Reference Implementation

* |EEE Std 1800.2-2020 (Free from IEEE)
* UVM 2020-1.1 Reference Implementation

http://www.accellera.org/downloads/standards/uvm/

https:/fieeexplore.ieee.org/document/9195920
75

A

lo\

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 45

Workbook

Constrained Random Verificﬂ:\l'a\"tf(')gf [;\

. DouLos

Does it work?
Constrained random ————

stimulus

i I —

L Are we done?

Increase coverage

76

The Big Picture

Subscriber Virtual sequencer

uvm_sequencer

uvm_agent uvm_agent

uvm_monitor ‘ | uvm_driver

77

46 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

lo\

DOULOS

pre_reset
reset
post_reset

end_of_elaboration

start_of_simulation pre_configure
configure
post_configure

pre_main

main
extract post_main
pre_shutdown
shutdown
post_shutdown

(Run-time phases) (Transaction-Level Modeling)

78

| For every component,
| | every sequence,

and every transaction

/]
x/

1. Write code to create an object of type T1

2. Set type override from T1to T2 in env or test

3. Factory creates an object of type T2

Class T2 must extend class T1

78

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 47

Workbook

UVM Hello World

Getting Started with UVM
I A e S 9
©) * UVM Hello World

® DUT Interface

® Sequencer-Driver Communication

&0

»W o
UVM Hello World Lo\
DOULOS

class
Env

class

interface

module

81

48 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

leo

DOULOS

Interface and DUT

AN

DOULOS

 interface dut_if; ' ‘module top;

endinterface

dut_if dut_ifl ();

module dut(dut if dif);
dut dutl (.dif(dut_ifl));

endmodule

endmodule

82

AN

DOULOS

The Env

class my_env extends uvm_env;

‘uvm_component_utils(my_env)

function new(string name, uvm component parent);
super.new (name, parent);

endfunction

endclass

83

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 49

Workbook

DOULOS

The Test (1)

‘class my test extends uvm_test;
‘uvm_component utils (my_ test)
function new(string name, uvm component parent);
super.new (name, parent);
endfunction

my env m_env;

function void build phase (uvm_phase phase);
m_env = my env::type id::create("m_env", this);

endfunction (UVM Factory)

84

The Test (2)

DOULOS

task run_phase (uvm_phase phase);
phase.raise objection(this); C UVM Objection)

#10;
‘uvm_info ("my_test", "Hello World", UVM_ MEDIUM)

phase.drop_objection(this);
endtask

endclass

85

50 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

AN

DOULOS

Classes in a Package

W;inciuda Juvm_macros.svh"
package my_ pkg;
import uvm _pkg::*;

class my env extends uvm env;
‘uvm_component_utils (my_ env)

enééiass
class my test extends uvm test;
‘uvm_component utils (my_test)

en&éiass

endpackage

86

AN

DOULOS

Running the Test

 interface dut_if; ' 'module top;

endinterface import uvm_pkg::*;
import my_pkg::*;

dut if dut_ifl ();
module dut(dut_if dif);

dut dutl (.dif(dut_ifl));
endmodule
r initial
begin

run_test ("my_test");

end

endmodule

87

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 51

Workbook

Hello World Source Code A

DOULOS

package my _pkg;

interface dut if;
- import uvm_pkg:

class my_sov extends wwm_snv;

endinterface
: ‘wvm_component_utils{my_env)

funstion new{string nams, uwm_component parant);
supexz.new(name, parent);
endfunction
endclass

[module dut(dut if dif);

endmodule

class my test extends uvm_test;
¥ ‘wvm_compenent_utils{my test)

-w:-du le top;
my_env m_enwv;

import uvm pkg::v; function new{string name, uwm_component parent) ;
import my pkg::*; super.new(name, parent);
endfunation
= dut_if dut 4£1 {}; function woid build phase (uvm phase phase) ;
m_env = my_env::type_id::create("m_env", this);

dut dutl (.dif(dut ifl)); | endfunction
A

task run_phase{uvm_phase phase);

initial phase.raise_objection (this) ;
begin #10;:
run test("my test"); ‘wwm_info ("', "Hello World", UVM MEDIUM)
end - phase.drop_chiectionithis);
endtask
endolass
endmodule endpackage: my_pkg
Y
‘7 R
- -
UVM Simulation Output Lo\
DOULOS
CDNS-UVM-1.2 (20.05-5003) 'u °u“d
() 2007-2014 Mentor Graphics Corporation
(C) 2007-2014 Cadence Design Systams, Inc.
(C] 2006-2014 Synepsys, Inc.
(C) 2011-2013 Cypress Semiconductor Corp.
(C) 2013-2014 KVIDIA Corporation
VM _INFQ B 0: reporter [ENTST] Bunning test my test...
UVM_INFC testbench.sv(58) 2 10: uvm_test_top [] Helle Werld
TVM_INFO fxcelium20.058/tools/ /methodology/UVM/CINS-1.2/asv/arc/base fuvm_objection.svh (1271}
E 10;: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phaas
TWM_INFOQ fxceliumZ0.09/toolsS /methedology/ UVM/ CONS—
1.2/ov/src/base/uvm_report_server.ovh(847) @ 10; reportar [UWVM/REPORT/SERVER]
--- TWH Report Summary ——-—
** Raport counts by severity
UVM_INFO : 4 . :
ST) https://iwww.edaplayground.com/x/GjxC
VM _ERROR = n
TVM_FATAL : 1]
** Raport counts by id
1 1
[ENTST] 1
[TEST_DONE] 1
[UVH/RELNOTES] 1
Simulation complete via $finish(l) at time 10 NS + 58 *restrssszss
89

52 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

DUT Interface

Getting Started with UVM

* UVM Hello World

» * DUT Interface

e . N

* Sequencer-Driver Communication

0

DUT Interface = N
Test

DOULOS
'Env
How do we connect to
interface? class
alock
reset
omd interface
{7:0] addr
{7:0] data
module
® 91

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

lo\

DOULOS

53

Workbook

54

Interface and DUT

interface dut_if;

logic clock, reset;
logic cmd;

logic [T:0] addr;
logic [T:0] data;

endinterface

DOULOS

module dut(dut_if dif):
import uvm_plkg::#*;

begin

end

endmodule

module top;
import uvm_pkg:
import my_ pkg::*%;

dut_if dut_ifl ():

dut dutl (.dif(dut_ifl));

initial
begin
run_test("my_test"});
end
endmodule

always @ (posedge dif.clock)

‘uvm_info("", $sformatf("DUT received cmd=%b, addr=%d, data=%d",
dif.cmd, dif.addr, dif.data), UVM_MEDIUM)

Bummy implementation

a2

Env

virtual interface
\

Virtual Interface

class

class

clock
reset

[7:0] addr
[7:0] data |

interface

module

DOULOS

a3

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

leo

DOULOS

DOULOS

Top Configuration
A — set database

Env

virtual interface ’

modules

|)

94

Config Set

DOULOS

Configuration
database

module top;
import uvm_pkg::*;
import my_pkg::*;

Scope Name = Vailue
Scope Name = Value

Scope Name = Value

dut_if dut_ifl ();

dut dutl (.dif(dut_ifl));

Type Caller Path Name Value

initial l l l l« l

begin
uvm_config_db #(virtual dut_if)::set(null, "*", “"dut_if", dut_ifl);

run_test("my_test");
end
endmodule: top

95

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 55

Workbook

DOULOS

| class my_driver extends uvm_driver;)

“uvm_component_utils (my_driver)

virtual dut_if dut_vi;

function new(string name, uvm_component parent);

super.new (name, parent);
function void build phase (uvm_phase phase);
Type Caller Path Name Value

uvm_config_db # (virtual dut_if)::get(this, "", "dut_if", dut_vi)
‘uvm_error("", "uvm_config db::get failed")
endfunction

| endclass

Config Get

b ‘.o ! |

T 96

class my_driver extends uvm_driver;
‘uvm_component_utils (my_driver)

virtual dut_if dut_vi;

task run_phase (uvm_phase phase);

endtask

endclass

Pin Wiggling

DOULOS

forever
begin
€ (posedge dut_vi.clock) ;
dut vi.cmd <= $urandom; , 5
dut:vi .addr <= $urandom; nggle pins of DUT
dut_vi.data <= $urandom;
end

97

56 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Sequencer-Driver Communication

Getting Started with UVM

I 2 A, e . N
* UVM Hello World

* DUT Interface

[> * Sequencer-Driver Communication

/&

DOULOS

B

A

DOULOS

Sequence Item Class

class my transaction extends uvm_ sequence item;

rand bit cmd;
rand bit [7:0] addr, data;

function new (string name = "");
super.new (name) ;
endfunction

‘uvm_object_utils_begin(my_transaction)
‘uvm_field int(cmd, UVM_DEFAULT)
‘uvm_field int(addr, UVM_DEFAULT)
‘uvm_field int(data, UVM DEFAULT)

‘uvm_object utils_end

endclass

99

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

Copyright © 2015-2023 by Doulos. All Rights Reserved 57

Workbook

DOULOS

Sequence Class

class my sequence extends uvm sequence #(my_ transaction);
‘uvm_object utils(my_sequence)

function new (string name = "");
super.new (name) ;
endfunction

task body;
repeat (8)

begin ‘uvm_do creates and sends a
‘uvm_do (req) randomized transaction to the driver

end
endtask (req inherited from uvm_sequence)

endclass

100

A

DOULOS

Sequence versus Sequence

class my_sequence extends uvm_sequence #(my_transaction);

endclass

typedef uvm_sequencer #(my transaction) my_ sequencer;

(A sequence runs on a SEqUEI"ICEI")

uvm_sequence extends uvm_sequence_item extends uvm_object
uvm_sequencer extends uvm_component extends uvm_object

101

58 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

Top

Configuration
S — | set database

lo\

DOULOS

Driver Run Phase

forever
begin

dut_vi.cmd
dut_vi.addr
dut_vi.data

end
endtask

endclass

seq_item port.get(req);

class my driver extends uvm driver #(my_transaction);

task run_phase (uvm_phase phase);

C Pull sequence item from sequencer)

@ (posedge dut_vi.clock);

req.cmd;

req.addr; }CDrive DUT through virtual interfacta

req.data;

103

Digital Verification for FPGA and ASIC Designers Workbook 1.0

Copyright © 2015-2023 by Doulos. All Rights Reserved

59

Workbook

A

Sequencer-Driver Connectic

DOULOS
[class my_env extends uvm_env; .
‘uvm_component_utils (my enwv)
my_seJuencer m_sedr;
my_driver m_driv;
function new(string name, uvm_component parent);
super.new (name, parent);
endfunction
function woid build phase(uvm_phase phase);
m_seqr = my_sequencer::type_id::create ("m_segr", this);
m_driv = my_driver i itype_id::create ("m_driv", this);
endfunction
function void connect phase (uvm_phase phase) ;
m_driv.seq_item port.connect(m_seqr.seq_item export);
endfunction
endclass

104

A

DOULOS

Starting the Sequence

‘class my_ test extends uvm_ test;

my env m env;

task run phase (uvm phase phase);
my sequence seq;
seq = my sequence::type id::create("seq"):

if(!'seq.randomize())
‘uvm_error("", "Randomize failed")

seq.set starting phase (phase) ;
seq.set automatic phase cbjection(1);:

seq.start(m env.m_seqr);

endtask Run phase ends when all
objections have been dropped

endclass

105

60 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

lo\

DOULOS

Env

Checking
and Sequence

Coverage

106

Doulos — Easier UVM

DOULOS

* Coding guidelines — "One way to do it" (Free and open)

* Automatic code generator Apache 2.0 li
ache 2.0 license

easierv’
* Help individuals and project teams UVM

® learn UVM and avoid pitfalls

* become productive with UVM (saves ~ 6 weeks)
* use UVM consistently

* Reduce the burden of supporting UVM code

https://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm/ @,

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 61

Workbook

Formal Verification for Non-Specialists

Learning to use Formal

Formal Verification for Non-Specialists
[A e % %
[> + Learning to use Formal

* Writing Properties

* Tackling State Space

* Under-constraining versus Over-constraining

* Using Formal

S

Why Formal Property Checki y /;\

* Bug hunting

+ Assurance, particularly of complex control logic

» Checking simple things like RTL linting,

connectivity, coverage waivers
» Forces you to understand the spec

» Post-silicon debug

108

62 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

Learning to Use.Formal < 4 {;\

* Formal is not hard to use!

Give it your RTL code
Write some properties

110

Writing Properties

Formal Verification for Non-Specialists
A TR .

* Learning to use Formal
[:) * Writing Properties

* Tackling State Space

* Under-constraining versus Over-constraining

* Using Formal

[\

DOULOS

m

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 63

Workbook

64

RTL

module selAB (
input logic clk,
input logic QA, selA, QB, selB,
output logic Q) ;
always @ (posedge clk)

begin
if (selA) Q <=
if (selB) Q <=

end

QA;
QB;

check_selA: assert property (

check _selB: assert property (

endmodule

RTL and Properties

@ (posedge clk) selA |=> Q

@ (posedge clk) selB |=> Q

A

DOULOS

Properties
$past (QA));

$past (QB));

12

* Formal is not hard to use!

Give it your RTL code
Write some properties

Learning to Use Formal

Push the Go button

Wait for some results

N

L)
DOULOS
Proof
Counter-example
Inconclusive
.1 13

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

—y
FON

DOULOS
SUMMARY
Properties Considered : 4
assertions i 1
- proven : 1 (50%)
- bounded proven (user) 0 (0%)
- bounded proven (auto) 0 (6%)
- marked proven : 0 (0%)
- cex 1 (50%) _
- ar_cex : 0 (6%)
- undetermined : 0 (0%)
- unknown : 0 (0%)
- error : 0 (6%)
covers $ 2
- unreachable : 0 (6%)
- bounded unreachable (user): 6 (0%)
- covered : 2 (100%)
- ar_covered : 0 (0%)
- undetermined : 0 (0%)
- unknown : 0 (0%)
- error : 0 (0%)
&

114

—
FON

DOULOS

(_Property fails when SelA = SelB = 1and QA!=QB)

e i etlby. ! luate_result.fsdb.vf
Be Sgnal View Wivetsem Toals Window Ml o B
Be N 359 &0 2 30 L -

Q Q)% o (I]viel[>] @ Gors: s0uReare

n
Ul
mC

Weve_d be wisdom

115

Digital Verification for FPGA and ASIC Designers Workbook 1.0

DOULOS

Copyright © 2015-2023 by Doulos. All Rights Reserved 65

Workbook

66

Learning to Use Formal e /;\

* Formal is not hard to use!

Give it your RTL code
Write some properties

Push the Go button

Proof

Counter-example

Wait for some results \
Decide what to do next

Inconclusive

formal can and cannot do

» The problem is understanding what

118

Formal Testbench ‘I /;\

Input Local Local
assumptions assertions assertions

'R R R R R R Booy

End-to-end
checks

4 4

17

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
Tackling State Space

Formal Verification for Non-Specialists
| R e % %

* Learning to use Formal

* Writing Properties
[> * Tackling State Space

* Under-constraining versus Over-constraining

* Using Formal

118

State Space AN

7111191411 oo T oo
I R R R I R
BRI I R e
B U N R I
T A T e U R A I TN N I
:U':UHH(Each flip-flop can be in a 0 or 1 state)HHHH
11187y yyyyyyyyyyyrsaoo
B I R e
B U U I I
B A A I e I A I I
B I R I e
B A A U I A I A

119

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 67

Workbook

68

3 a~
State Space Lo\
DOULOS
(276 FFs == 21276 states (~1083)) N state bits
oI oIoTen ;Inrﬂﬂﬂlllrrﬂ
IITIOTTIOANEOT I 00N OOT T
TITEOITIa OO OT I 0o ooy
PEERRERERS R ERE R R R
FEERRERE R ERRER R R R
T OITI0 RN IT O ON 0T T
IITIOITTIOINEOTII 00N OOT T
TETEOTITTO O OrTIToon ooy State space
FEERRERE R ERRER R R R
DI ITI0R ORI IT 00N O0TT
IITIITTI0IN DT II 00N oOT T
TITI T o o OT IO T 0TS
N flops 2N states
.I120
DOULOS
A
=
Possible states "Golden threade”
¥ . e ——————
s ¢ '.
State s ¢ % °
space : ® ® ,:
° -~ s .. L L]
Reset. g ® * é =9
state '@ : = ® ®
= M s o ° @
£ ® L]
L J L]
s
v ;
> Time
.121

Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS

Formal Model Checking {;\

DOULOS
Ao 3 3 ® L] ® L] [] 3 ® ®
[] ® [] [] ® 2 3 ® 3 ® e
® @ & & & giste space represented symbolically,
: : : : : not fully enumerated
State | ® L] [] ® L] ® ® @ [] @ L]
space | ® [] @ [] [] ® [] ® 3 ® [
[] [] [] [] ® ® [] [] [] ® ®
[] [] 3 [] [] ® [] [] k3 ® 3
[] [] [] ® ® ® L] [] ® ® 3
® [] [] ® ® ® ® ® ® []
e o o o o o o o g 't g
e o & o o o o o o stte o
5 L] 3 ® [] ® [] [] ® " o
® [] e ® L] @ ® [] [] [] e
3 L] [] ® ® ® [] @ 3 ® 3
® ® [] ® 3 L3 [] ® 3 ® L]
ve ® ® ® L] ® ® [] [] ® ®
> Time
122
Target State AN

DOULOS

assert property (@(posedge clk) request |=> grant);

request @ ® grant

Try to find a sequence of states that would make the assertion "fire"

request==1 @——>@ grant==0

123

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 69

Workbook

Find a Trace that Breaks the ASGgrly /;\

DOULOS

A
State
space : request ==
[d [® grant ==
e o o o
® P ® Target
® ® ® ® state
[] L] % @
3 ®
L] []
Y > Time

124

Model Checking A\
DOULOS
A e ®© o ®o o © o o
e © o o o & o o
e o e o & o o o o
e ®© e o o o o ®
e o o o o o o lAgt g
State e 6 & e e o o o ste g
space e & ® & o o o o W o
e & o e o & o o o o
e ®© o ©® & o o o = ° e
® ® ® ® ° ® ® Golden nuggets
Reset @ [] ® ® [] [] ® ® k] ®
state ®@ © @® @ @ o e o o
= e o o o o gt g o o
° e o ° @ state o ® ®
e ®© o o o @ e o o
e @ o o e o o o
e e ® o o o o o
v e & & o & 6 o o_
> Time
125

70 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
Under-constraining versus Over-constraining

Formal Verification for Non-Specialists
o e @ N

* Learning to use Formal

Writing Properties

Tackling State Space
[> * Under-constraining versus Over-constraining

* Using Formal

.
DouLOs
126
% A
The Failing Example p /
DOULOS
Source Pane - visuskze:S +8 %
t] |@s|e Ger) e |0 L & Eecar 7 ESRE vyRal
1 sodule seldd (-]
2 input logic clk,
3 input logic f elA, 08
a output logic .l.:.
; h
6 always @lposedge cli)
i "o de o Inputs are under-constrained
9 iff (s f_‘) ‘<- 0e;
0 end
1
120 EHEERISANA: assert property {
130 @(posedge clx) BEER |=> B == spastifi});
14 check sell: assert property { ., ._
15 @posedge clx) selBf |e> O == §p <»=(.n“) 1H
16 ;) —
17 endsodule ;l
[Selected. <embeddeds: selAR. check_selh [Why at iteration 2+ for check_seiA (1 of 2] | selAB.sv | Visualize trace |
127

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 71

Workbook

Under-constrained Inputs % !I /;\

DOULOS

always @ (posedge clk) %
begin ;
if (selA) Q <= QA;
if (selB) Q <= QB; -
end 0

M Under-constrained
inputs often give
false negatives

128

Input Assume Statement % E [;\

DOULOS

module selAB (
input logic clk,
input logic QA, selA, QB, selB,
output logic Q) ;

always @ (posedge clk)
begin
if (selA) Q <= QA;
if (selB) Q <= QB;

end
check selA: assert property (

@ (posedge clk) selA |=> Q == $past(QA));
check_selB: assert property (

@ (posedge clk) selB |=> Q == $past(QB));
assume_not_11: assume property (

@ (posedge clk) !(selA & selB));
endmodule

129

72 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

DOULOS

DOULOS
SUMMARY
Properties Considered 1 4
assertions 22
- proven 1 2 (100%) _
- bounded proven (user) 0 (0%)
- bounded_proven (auto) 0 (0%)
- marked proven 1 0 (0%)
- cex : 0 (0%)
- ar_cex : 0 (0%)
- undetermined : 0 (0%)
- unknown 1 0 (0%)
- error 10 (0%)
covers =il
- unreachable 1 0 (0%)
- bounded unreachable (user): 0 (0%)
- covered : 2 (100%)
- ar_covered 1 0 (0%)
- undetermined 1 0 (0%)
- unknown 1 0 (0%)
- error 1 0 (0%)

130

Over-constrained Inputs

DOULOS

o @

E ﬁrs @ always € (posedge clk) b
begin —

et if (selA) Q <= QA; 2

8 110 if (selB) Q <= QB; 5

0111 end 1

1000 0

1001 0

T 15000 assume property (1

1101 @ (posedge clk) selA != selB); 1

\ o Overconstrained

2 « inputs can give
Ve \ false positives

131

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 73

Workbook

74

always @ (posedge
begin
if (seld) Q <=
if (selB) Q <=
end

check_selA: assert property
@ (posedge clk) [seld [I=> @ ==

check_selB: assert property
@ (posedge clk) [selB [|=> Q ==

alk)

QA
QB;

assume not 11: assume property (
g (posedge clk) selA != selB)

Verifying Assumptions with C0

Spast (QA))

$past (QB));

cover 00: cover property (
@ (posedge clk)

!'selA & !selB)

Check input not over-constrained

>

A

DOULOS

132

SUMMARY

Properties Considered

ass

cov

ertions

proven

bounded proven (user)
bounded proven (auto)
marked proven

cex

ar_cex

undetermined

unknown

error

ers

unreachable

bounded unreachable (user):

covered
ar_covered
undetermined
unknown
error

QOO ONOHWOOOOOODODOONNW

(100%)
(0%)
(0%)
(0%)
(0%)
(0%)
(0%)
(0%)
(0%)

(33.3333%) 4

(0%)
(66.6667%)
(0%)
(0%)
(0%)
(0%)

DOULOS

133

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
fv A
Verifying Assumptions with COVER AN
DOULOS
always @ (posedge clk)
begin
if (selA) Q <= QA;
if (selB) Q <= QB;
end
check_selA: assert property (
@ (posedge clk) selA |=> Q == $past(QA));
check_selB: assert property (
@ (posedge clk) selB |=> Q == $past(QB));
assume_not_11: assume property (2 z
@ (posedge clk) ! (selA & selB)); Fix the assumption
cover_00: cover property (
@ (posedge clk) !selA & !selB);
134

A

DOULOS

When things go wrong

+ False negatives due to assertion bugs — debug CEX
+ False negatives due to under-constrained inputs — debug CEX

+ False positives due to over-constrained inputs — covers or
simulation

+ False positives due to insufficient assertions — assertion
coverage

+ False positives due to loose assertions — a challenge!

135

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 75

Workbook

Using Formal

Formal Verification for Non-Specialists
[A e % %

* Learning to use Formal

* Writing Properties

* Tackling State Space

* Under-constraining versus Over-constraining

[> * Using Formal

136

Formal Use Model I

« Use formal at block level, even before simulation

» Find bugs before simulation
» Forced to think about the spec

» Properties carried around with the RTL

+ Distinguish between local (simple) and end-to-end assertions
« Simple assertions are easy to write / understand / prove / debug

* End-to-end assertions are sometimes the most valuable

137

76 Copyright © 2015-2023 by Doulos. All Rights Reserved Digital Verification for FPGA and ASIC Designers Workbook 1.0

A

lo\

DOULOS
Conclusions and Recommendations

Conclusions and Recommendations
N A e @ N

[\

DOULOS

138

Formal Complements Simulation 4 /;\
DOULOS

« Formal and simulation have different strengths and blind spots

« Formal will find bugs missed by simulation, and vice versa

« Formal encourages a different mindset from simulation

139

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 77

Workbook

78

Tzt
Test
)
Reusatie venfication smvironment
vitua
|2
- = ft
o Pegstelem |
EERTHRIRIGERSY
foent] Agert Agart

Simulation (UVM)
Of course!
But maybe not everything

UVM or Formal?

Formal

—

"I\

DOuULOS

Target pain points
Complement simulation

Include in verification

planning

140

A

[\

DOULOS

SoC Design &
Verification

FPGA & Hardware
Design

Embedded Software
Python & Deep Learning

www.doulos.com

» SystemVerilog » UVM » Formal

» SystemC » TLM-2.0

» VHDL » Verilog » SystemVerilog
» Tcl » Xilinx » Intel FPGA (Altera)

» Emb C/C++ » Emb Linux

» Yocto » RTOS » Security » Arm

141

Copyright © 2015-2023 by Doulos. All Rights Reserved

Digital Verification for FPGA and ASIC Designers Workbook 1.0

DOULOS

Digital Verification for FPGA and ASIC Designers Workbook 1.0 Copyright © 2015-2023 by Doulos. All Rights Reserved 79

A

[o\

DOULOS

www.doulos.com

	Contents
	Current Verification Landscape
	Verification Approaches
	Simulation and Testbenches
	Coverage
	Formal Verification

	Class-Based SystemVerilog Verification
	What is SystemVerilog?
	SystemVerilog Classes
	Virtual Interfaces
	Constraints and Functional Coverage

	Universal Verification Methodology (UVM)
	What is UVM?
	UVM Hello World
	DUT Interface
	Sequencer-Driver Communication

	Formal Verification for Non-Specialists
	Learning to use Formal
	Writing Properties
	Tackling State Space
	Under-constraining versus Over-constraining
	Using Formal

	Conclusions and Recommendations

