Digital Verification for FPGA and ASIC Designers

Delivering KnowHow

Digital Verification for FPGA and ASIC Designers

www.doulos.com

Digital Verification for FPGA and ASIC Designers

Copyright © 2015-2023 by Doulos. All Rights Reserved

All intellectual property rights, including copyright, patents, design rights and know-how in or relating to the course or course materials provided or made available in connection with the course remain the sole property of Doulos Ltd or their respective owners and no copies may be made of course materials unless expressly agreed in writing by Doulos Ltd.

All trademarks acknowledged.

Doulos takes great care in developing and maintaining materials to ensure they are an effective and accurate medium for communicating design know-how. However, the information provided on a Doulos training course may be out of date or include omissions, inaccuracies or other errors. Except where expressly provided otherwise in agreement between you and Doulos, all information provided directly or indirectly through a Doulos training course is provided "as is" without warranty of any kind.

Doulos hereby disclaims all warranties with respect to this information, whether express or implied, including the implied warranties of merchantability, satisfactory quality and fitness for a particular purpose. In no event shall Doulos be liable for any direct, indirect, incidental special or consequential damages, or damages for loss of profits, revenue, data or use, incurred by you or any third party, whether in contract, tort or otherwise, arising for your access to, use of, or reliance upon information obtained from or through a Doulos training course. Doulos reserves the right to make changes, updates or corrections to the information contained in its training courses at any time without notice.

Doulos Limited Church Hatch, 22 Market Place, Ringwood, Hampshire, BH24 1AW, UK

Tel: +44 (0) 1425 471223

Email: info@doulos.com

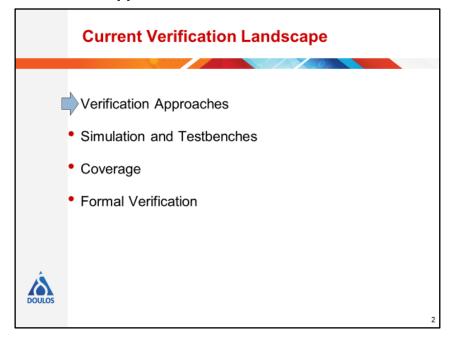
www.doulos.com


Doulos 6203 San Ignacio Avenue, Suite 110, San Jose, CA 95119, USA

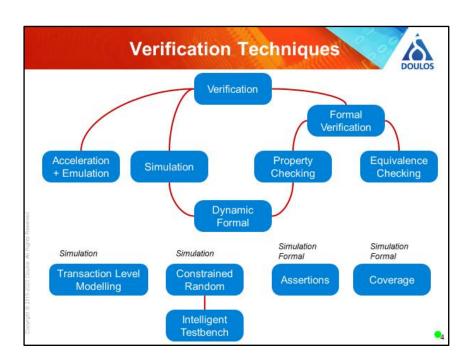
Tel: 1-888-GO DOULOS Email: info.usa@doulos.com

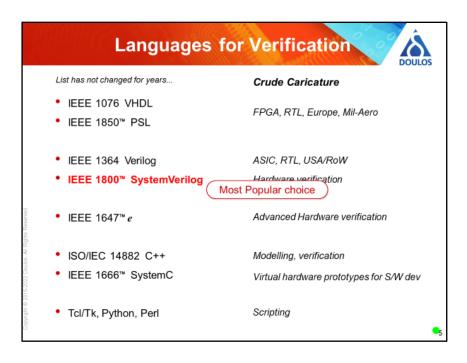
Contents

Contents	7
Current Verification Landscape	9
Verification Approaches	9
Simulation and Testbenches	. 13
Coverage	. 20
Formal Verification	. 23
Class-Based SystemVerilog Verification	. 26
What is SystemVerilog?	. 26
SystemVerilog Classes	. 31
Virtual Interfaces	. 38
Constraints and Functional Coverage	. 41
Universal Verification Methodology (UVM)	. 44
What is UVM?	. 44
UVM Hello World	. 48
DUT Interface	. 53
Sequencer-Driver Communication	. 57
Formal Verification for Non-Specialists	. 62
Learning to use Formal	. 62
Writing Properties	. 63
Tackling State Space	. 67
Under-constraining versus Over-constraining	.71
Using Formal	. 76
Conclusions and Recommendations	. 77

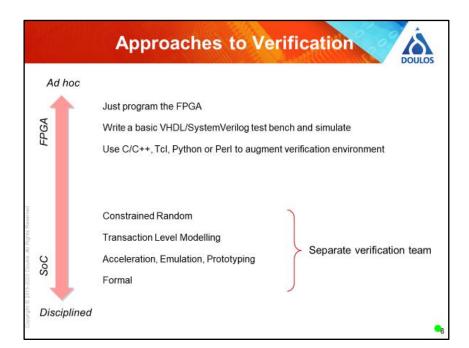


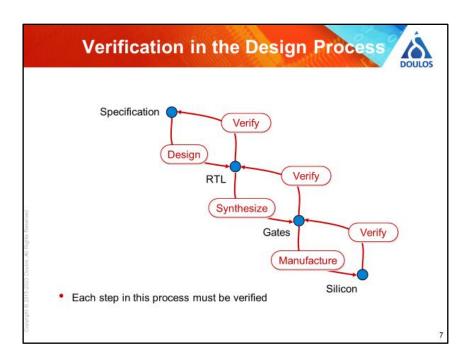
Notes

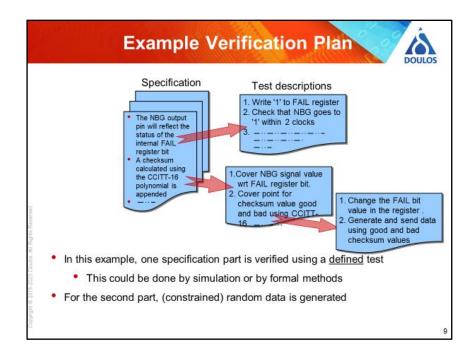


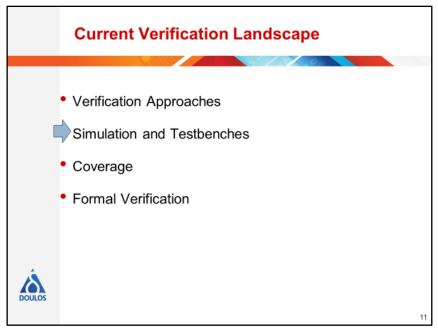

Current Verification Landscape

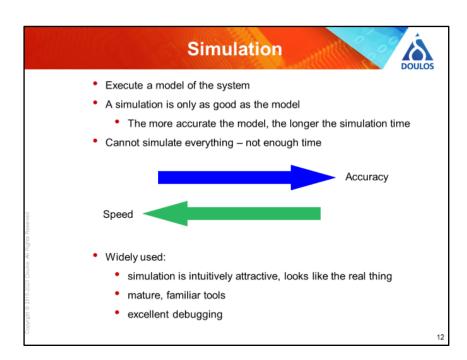
Verification Approaches

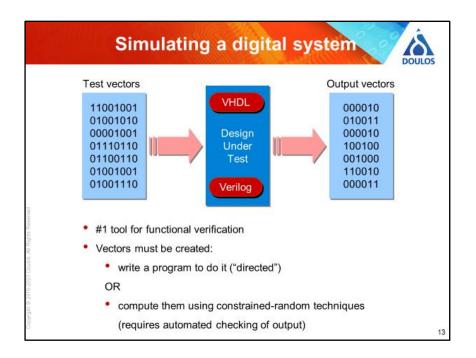




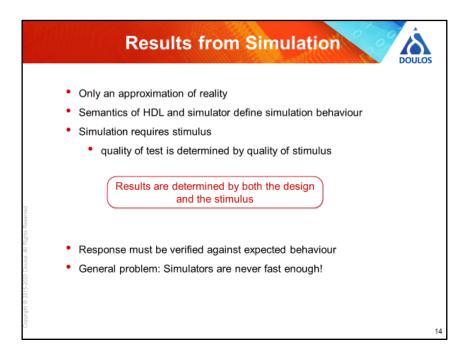


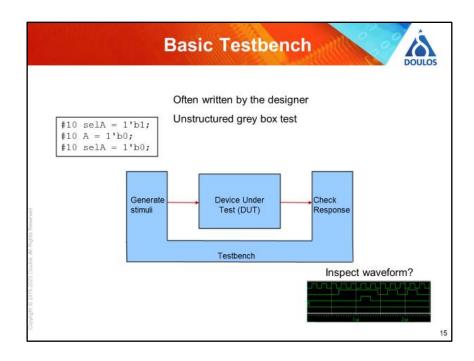


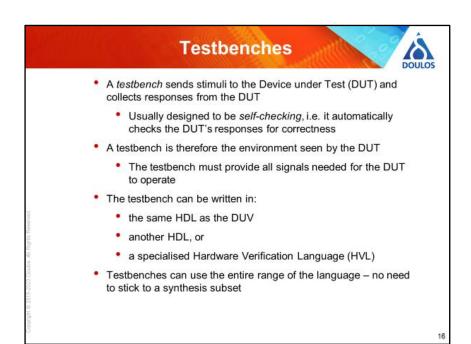


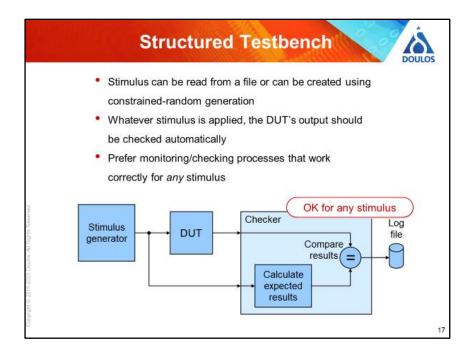


 Locating errors or potential error verification effort later 	rs in HDL code can save a lot of
 Simulators and formal tools sho 	uld find errors eventually
 A Linting Tool finds common er 	ors quickly and automatically
• Example:	
<pre>always @(Select) if (Select) Y= A; else Y=B; Warning: Incomplete event list</pre>	 Verilint HAL LEDA

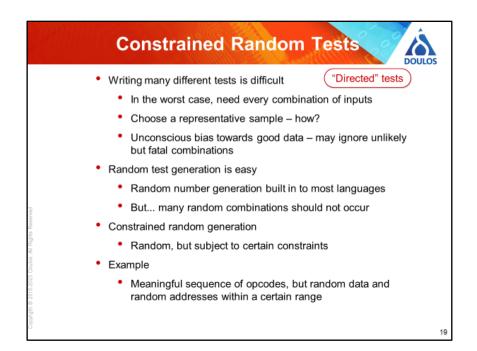

Simulation and Testbenches

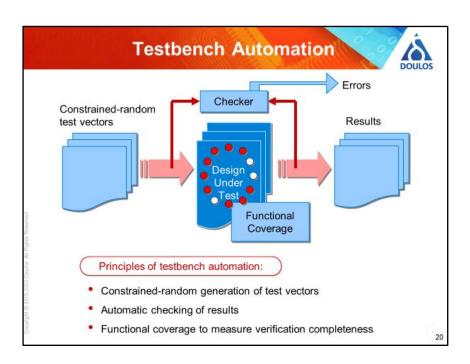


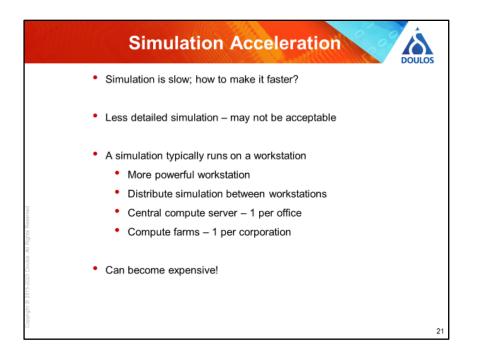


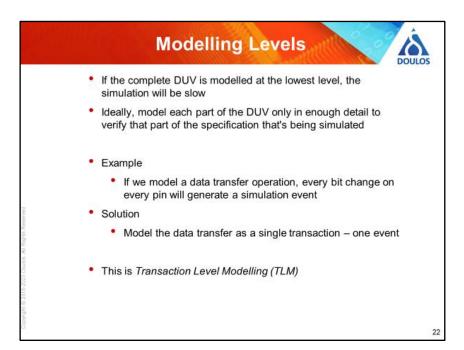


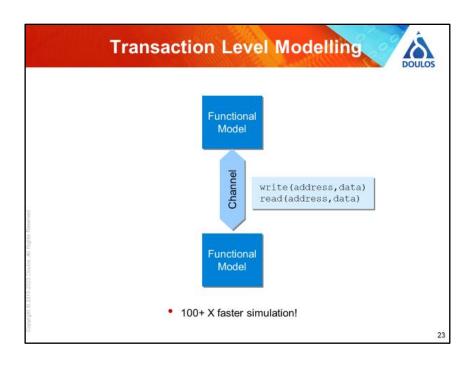


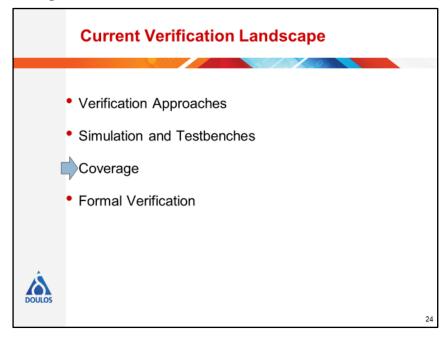


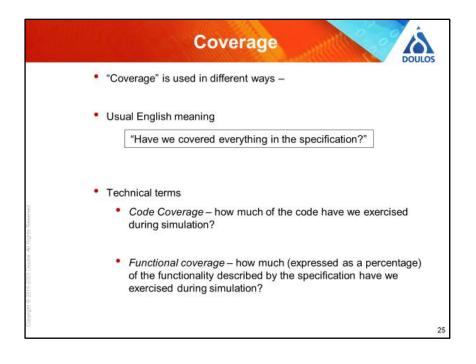


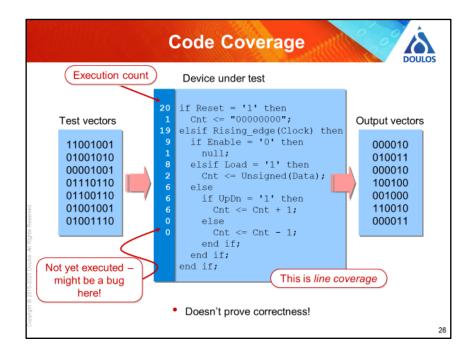


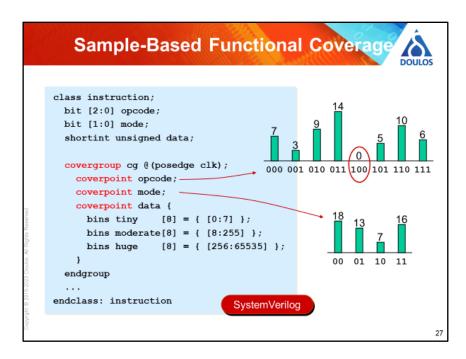


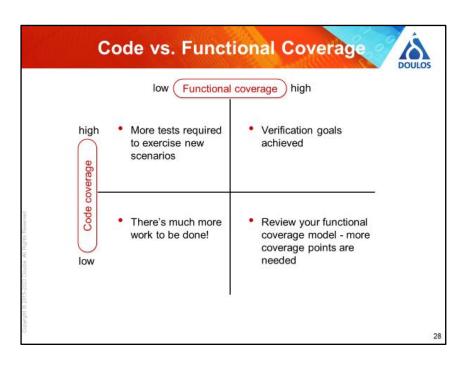


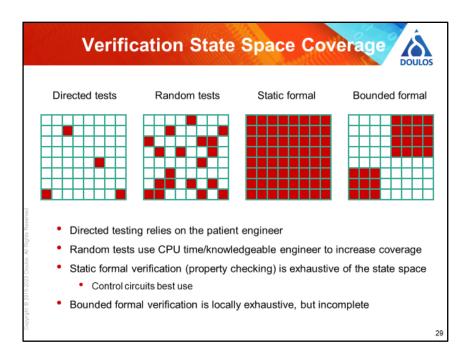


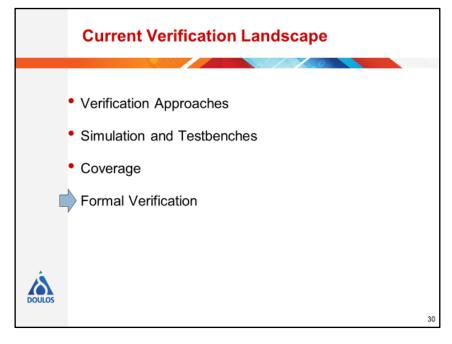


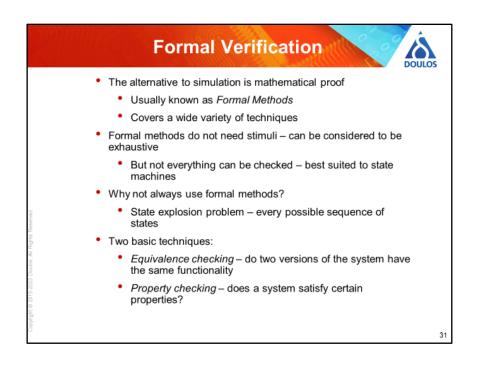


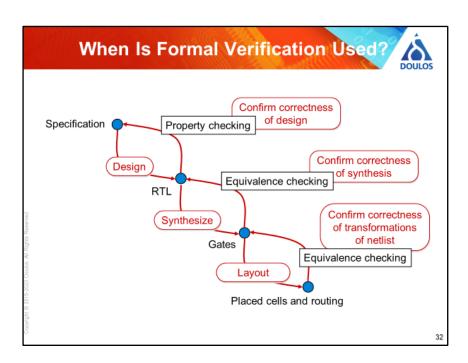

Coverage

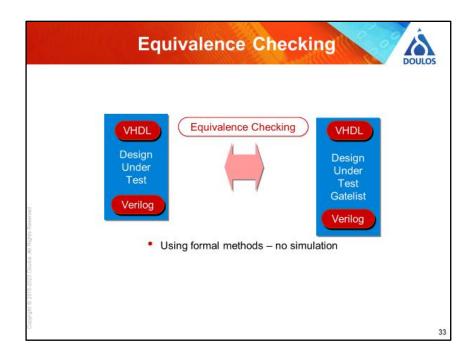




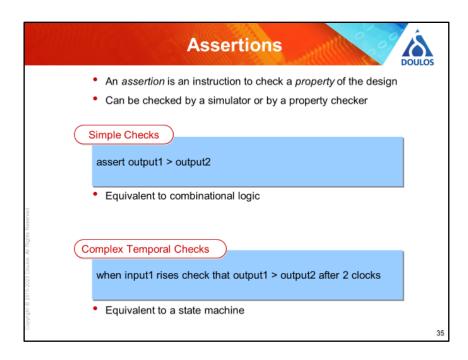


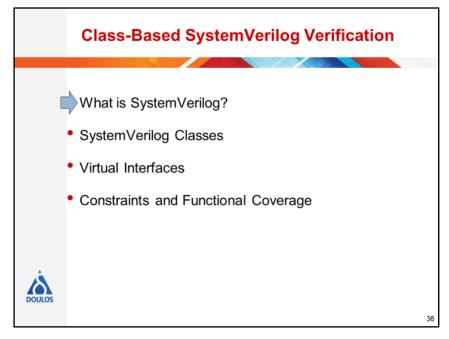


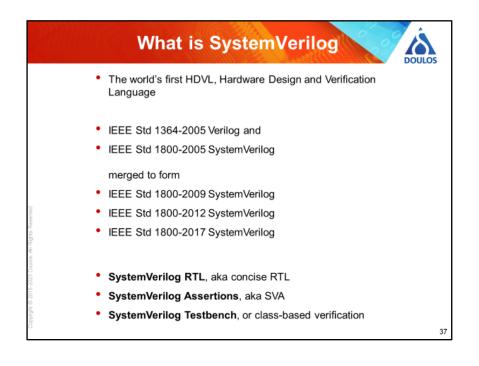




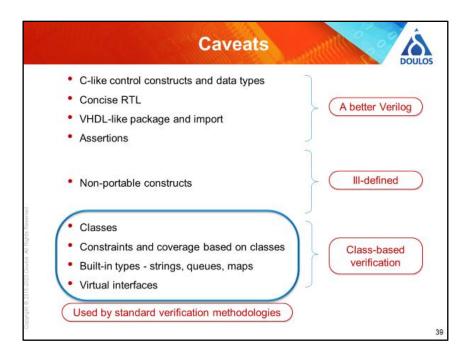
Formal Verification

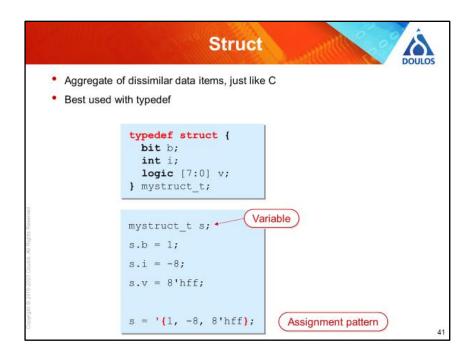





	Property Checkin	g	DOULOS
		Properties	
VHDL Design Under Test Verilog		assert A > B	
	Using formal methods – no simu Exhaustive state space coverage		

Class-Based SystemVerilog Verification


What is SystemVerilog?

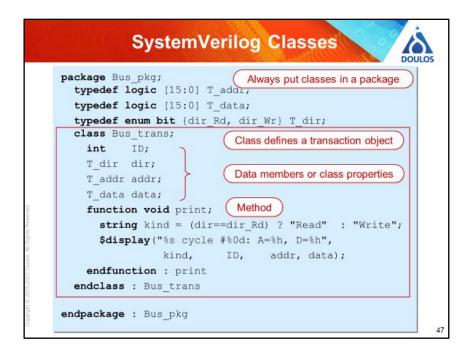


	SystemVerilog Language Features
ATL BOOM BORNER	C-style data types & control - enum, struct, typedef, ++, break, return Synthesis-friendly "concise" RTL notation Packages Interfaces
Assertions	SystemVerilog Assertions
1estenut	Clocking blocks (synchronization between DUT and test bench) Object-oriented programming - classes Constrained random stimulus generation Functional coverage Dynamic processes, dynamic arrays, queues, mailboxes, semaphores
	Direct Programming Interface (DPI) - calling C from SystemVerilog Extensions to VPI

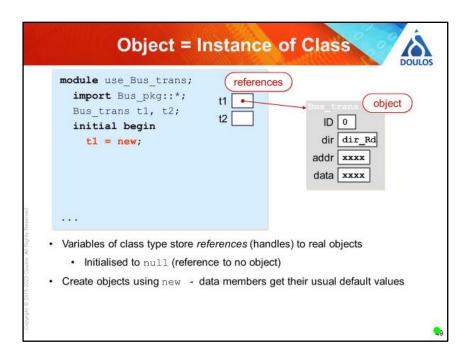
	4-State a	and 2-State	Types
4-state ty	pes Signed	Unsigned	Width
	logic signed	logic	1 bit
	logic signed [n:m]	logic [n:m]	N bits
2-state ty	pes (variables only,	not wires)	
2-state ty	pes (variables only, <i>Signed</i>	not wires) Unsigned	Width
2-state ty		,	<i>Width</i> 1 bit
2-state ty	Signed	Unsigned	
2-state ty	Signed bit signed	Unsigned	1 bit
2-state ty	Signed bit signed bit signed [n:m]	Unsigned bit bit [n:m]	1 bit N bits
-state ty	Signed bit signed bit signed [n:m] byte	Unsigned bit bit [n:m] byte unsigned	1 bit N bits 8 bits

Interfaces	Â
 Simple interface = bundle of w 	ires/vars
<pre>interface APB; logic PCLK, PSEL, PENABLE, PWRIT logic [15:0] PADDR; logic [31:0] PWDATA; logic [31:0] PRDATA; endinterface</pre>	E;
<pre>module Master (APB iport,);</pre>	

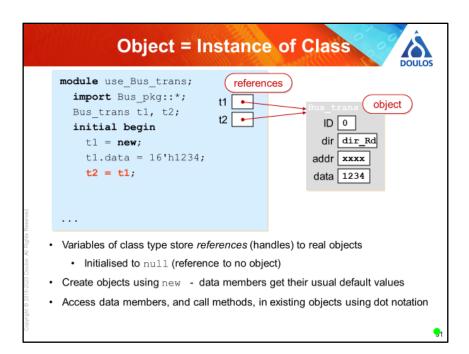
Immediate and Concurrent Assertion	ULOS
Procedural assertion – sampled procedurally	
always assert (EXPRESSION);	
Ordinary SystemVerilog expression	
Concurrent assertion - condition is usually sampled on clock edge assert property (@(posedge Clock) CONDITION);	
SystemVerilog property	$\overline{)}$
Condition is only tested when pre-condition has been matched	
Condition is only tested when pre-condition has been matched assert property (@ (posedge Clock) PRECONDITION -> CONDITION);	


Concurrent Assertions	Â
Check or prove the property	DOULO
label: assert property (PROPERTY) ACTION_BLOCK;	
Collect functional coverage information	
label: cover property (PROPERTY) STATEMENT;	
Make the property an assumption for formal	
<pre>label: assume property (PROPERTY);</pre>	

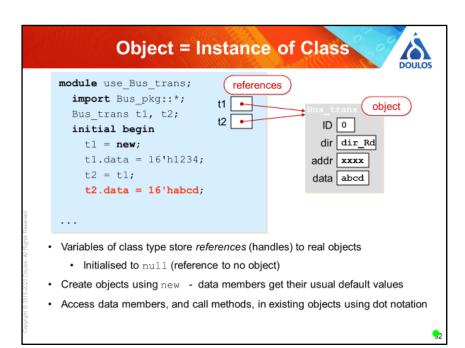
	ices describe temporal behaviour
Temporal means the	sequence spans more than one clock cycle
Concurrent assertion) (Sequences)
@ (posedge Clock);	
	Property
	hrough matching a sequence erty's obligation to hold for PROPERTY)

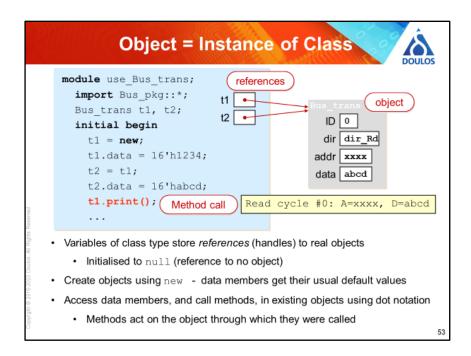


SystemVerilog Classes

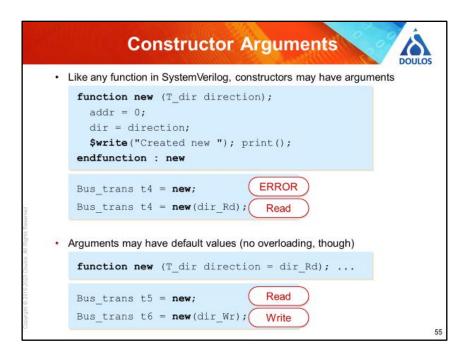


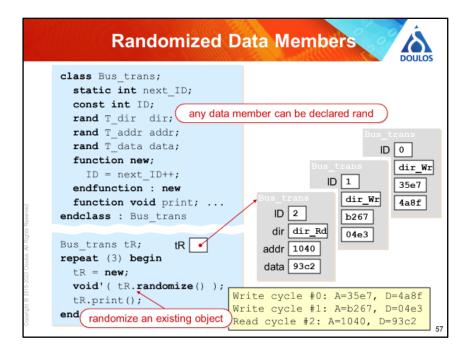
im Bu	le use_Bus_ port Bus_pk s_trans t1, itial begin	t2;	t1	nces		
	T					
	oles of class ty	8		an a	eal objects	
• 1	nitialised to nu	ill (referer	nce to no ob	ject)		

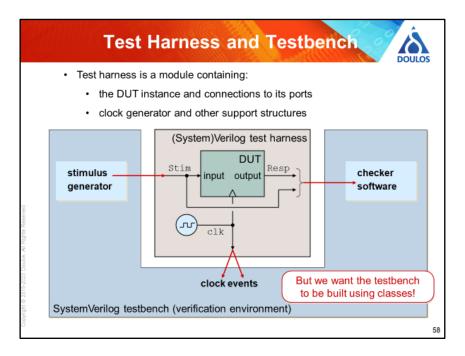


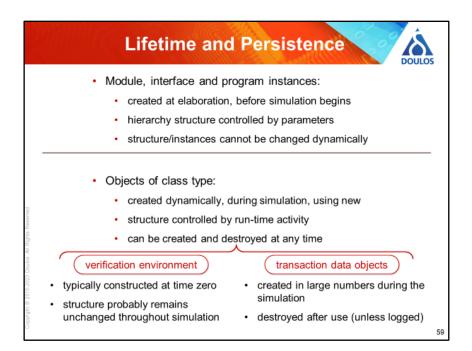


Object = Instance	of Class
<pre>module use_Bus_trans; import Bus_pkg::*; Bus_trans t1, t2; initial begin t1 = new; t1.data = 16'h1234;</pre>	Bus_trans object ID 0 dir dir_Rd addr xxxx data 1234
 Variables of class type store <i>references</i> (har Initialised to null (reference to no obje Create objects using new - data members Access data members, and call methods, in 	ect) get their usual default values

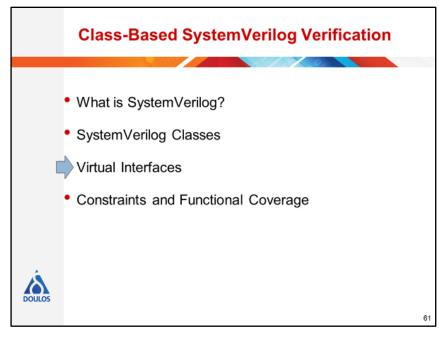

-

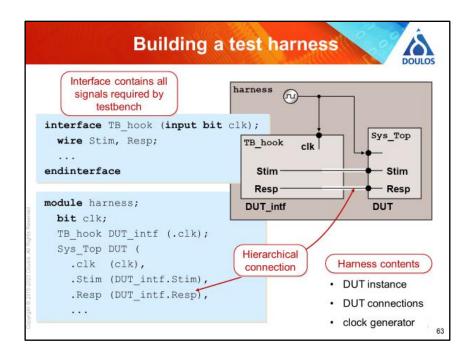



	D
module use_Bus_trans	
<pre>import Bus_pkg::*; Bus trans t3 = new</pre>	C.
class Bus_trans; 	
 function new;	Explicit constructor new. No return
function new; addr = 0;	Explicit constructor new. No return
 function new;	
<pre>function new; addr = 0; dir = dir_Wr;</pre>	
<pre>function new; addr = 0; dir = dir_Wr; \$write("Created</pre>	new ");

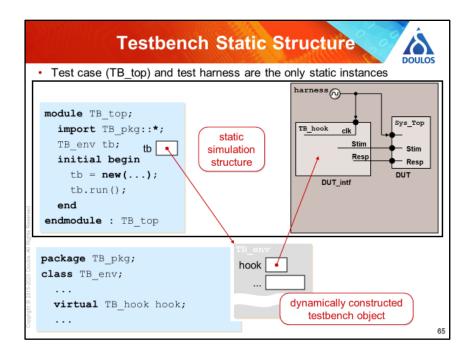


Randomized Data Members
<pre>class Bus_trans; static int next_ID; const int ID; any data member can be declared rand</pre>
rand T_addr addr; rand T_addr addr; rand T_data data; function new;
ID = next_ID++; unique serial number Bus_trans dir_Wr endfunction : new ID 1 35e7 function void print; dir_Wr 4a8f
endclass : Bus_trans addr b267 Bus_trans tR; tR • data 04e3
<pre>repeat (3) begin tR = new; void'(tR.randomize()); tR.print(); </pre> Write cycle #0: A=35e7, D=4a8f
end randomize an existing object

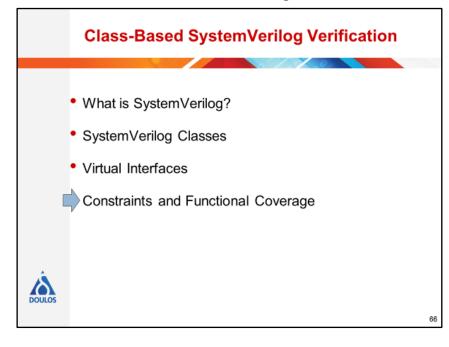


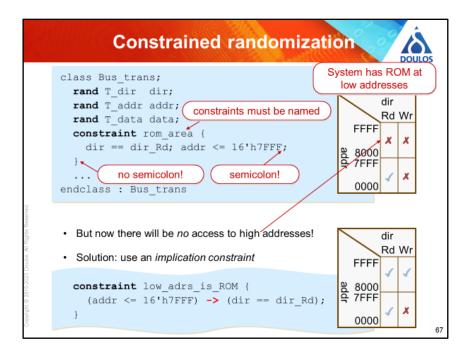

Creating the Te	estbench
<pre>module TB_top; import TB_pkg::*; TB_env tb; tb initial begin tb = new; tb.run(); end endmodule : TB_top class TB_env; task drive_Stim(input bit data);</pre>	<pre>module harness; logic Stim, Resp; bit clk; Sys_Top DUT (.*); endmodule Test harness modul Stim input output Resp clk</pre>
<pre>@ (posedge harness.clk) harness.Stim <= data; endtask</pre>	Our entire testbench class is hard-coded for the name of the test harness!

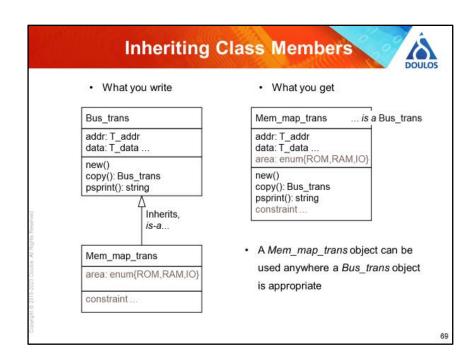
Virtual Interfaces



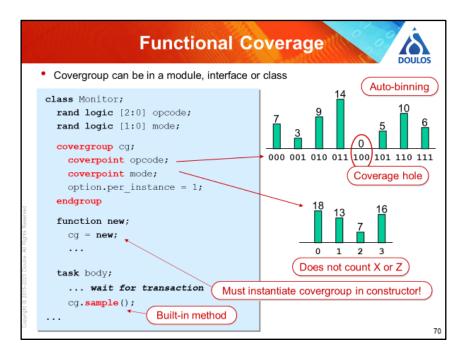
Virtual Interf	ace
<pre>class TB_env; virtual TB_hook hook; function new(virtual TB_hook h); hook = h; endfunction : new task drive_Stim(input bit data); @(posedge hook.clk) hook.Stim <= data; endtask </pre>	 How does it link
Copyri	6



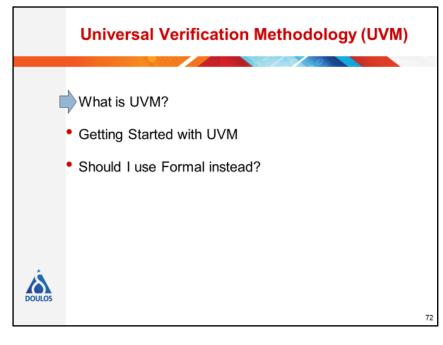

Connecting the virtual interface	DOULOS
<pre>class TB_env; virtual TB_hook V; function new (virtual TB_hook V,); this.V = V; constructor endfunction</pre>	
<pre>module TB_top; TB_env tb; initial begin tb = new(harness.DUT_intf,);</pre>	
<pre>bit clk; TB_hook DUT_intf (.clk); Sys_Top DUT (</pre>	64

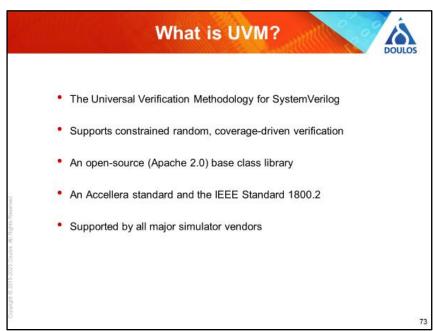


Constraints and Functional Coverage

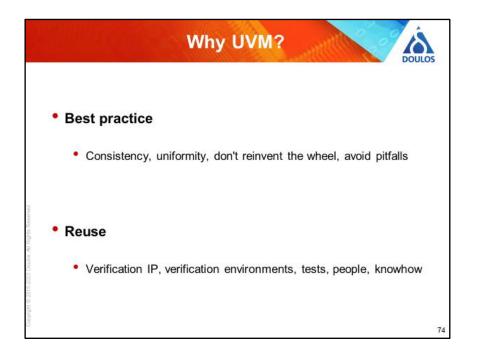


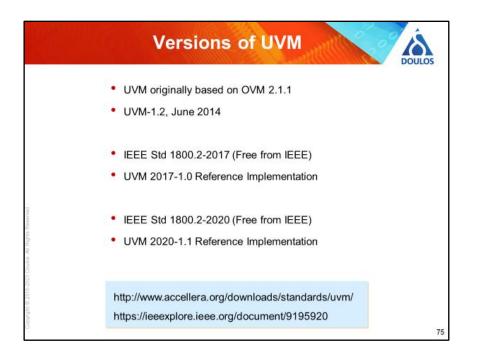
<pre>class Bus_trans; rand T_dir dir; rand T_addr addr; rand T_data data; constraint low_adrs_is_ROM { (addr <= 16'h7FFF) -> (dir == dir_Rd); } Don't modify the original class definition lnstead, extend it: Class Mem_map_trans extends Bus_trans; constraint low_adrs_is_ROM { (addr <= 16'h7FFF) -> (dir == dir_Rd); } } </pre>	Creating an I	Extended Class
<pre>constraint low_adrs_is_ROM { (addr <= 16'h7FFF) -> (dir == dir_Rd); } Don't modify the original class definition Instead, extend it: Everything in the base class, plus class Mem_map_trans extends Bus_trans; constraint low_adrs_is_ROM {</pre>	rand T_dir dir; rand T_addr addr;	Better not to mix
 Instead, extend it: Everything in the base class, plus class Mem_map_trans extends Bus_trans; constraint low_adrs_is_ROM { 		ROM {
constraint low_adrs_is_ROM {	, ,	
	constraint low_adrs_is_F	ROM {

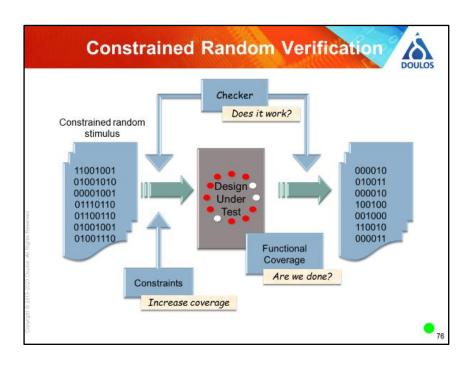


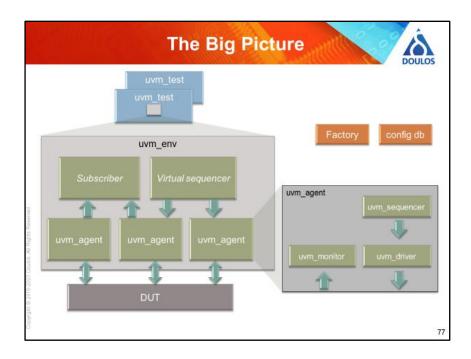


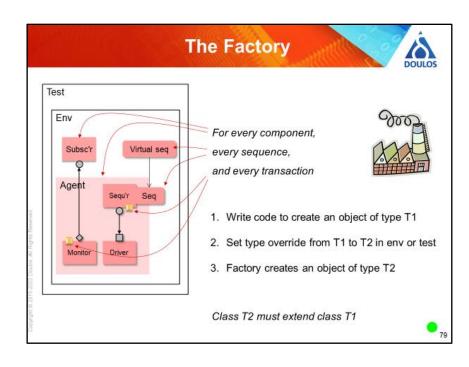
EDA playground	@Run @Copy	KnowHOw Weblinars Dealing with Complexity FREE L hour weblinar - Ju	ne 23,2023	STER 🖉 🕑 🕈 Playgrounds Log I
Starget year by the Apoluto's Langunges & Langunges & L	<pre>Numeric TL_App. * Numer * * ''''''''''''''''''''''''''''''''''</pre>	Practice - Share - Learn Simulate your code in a web browser	Briveriga Testhernin	Internet in state in the second state in the second state in the second state is the s
Rus Time: Time Coore ready Table Other Readward and Except Open EXPlane after an Ownersaal files after ann Ownersaal files after a	Log SystemWorking interface to Connecting a SystemWorking interface to	2002 over and 2 likes a class-based welfcation eministration using a visual interface https://www.edaplaygrou	nd.com/	\supset

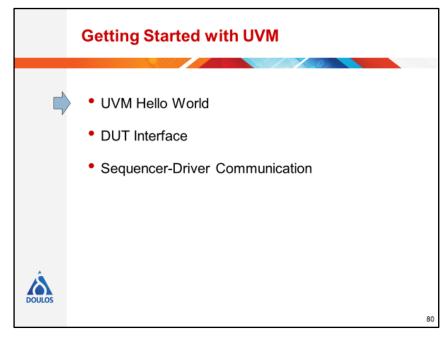

Universal Verification Methodology (UVM)

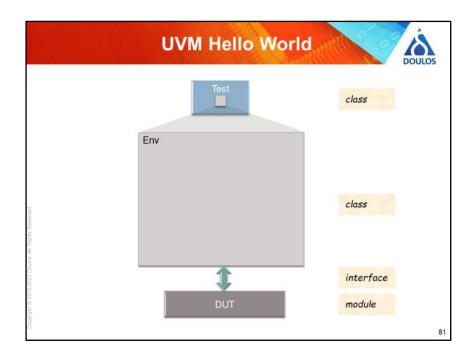

What is UVM?





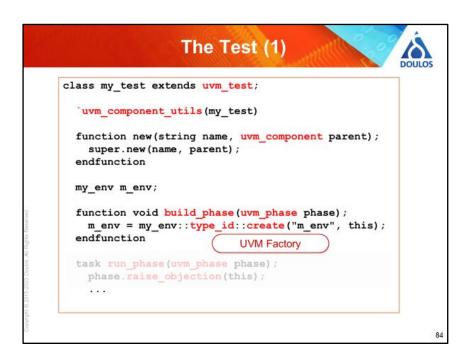






build connect end_of_elaboration start_of_simulation run run check report final	pre_reset reset post_reset pre_configure configure post_configure pre_main main post_main pre_shutdown shutdown post_shutdown post_shutdown	Env Subsc'r Agent Monitor	Virtual seq Sequ'r Seq Driver
---	---	------------------------------------	-------------------------------------

UVM Hello World

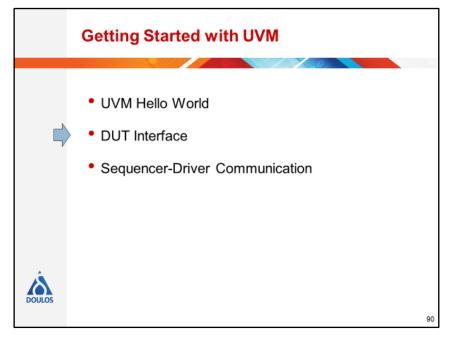


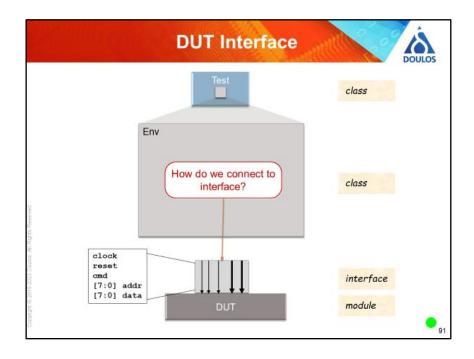
interface dut_if;	module top;
endinterface	
<pre>module dut(dut_if dif); endmodule</pre>	<pre>dut_if dut_if1 (); dut dut1 (.dif(dut_if1));</pre>
	endmodule

class my_e	nv extends uvm_env;
`uvm_com	<pre>ponent_utils(my_env)</pre>
	<pre>new(string name, uvm_component parent) new(name, parent); ion</pre>
endclass	

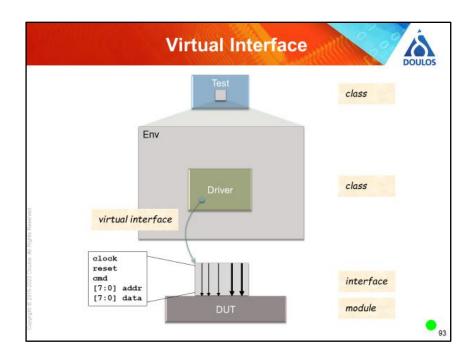
<pre>m_env = my endfunction</pre>	y_env::type_id::cre	<pre>ate("m_env", this);</pre>
task run ph	ase (uvm phase phase);
phase.rai	<pre>se_objection(this);</pre>	UVM Objection
#10;		
`uvm_info	("my_test", "Hello)	World", UVM_MEDIUM)
phase.dro	<pre>objection(this);</pre>	
endtask	and the second second	
dclass		

`include "uvm_macros.svh"	
<pre>package my_pkg;</pre>	
<pre>import uvm_pkg::*;</pre>	
<pre>class my_env extends uvm_env; `uvm_component_utils(my_env)</pre>	
endclass	
class my_test extends uvm_test;	
<pre>`uvm_component_utils(my_test)</pre>	
endclass	
endpackage	

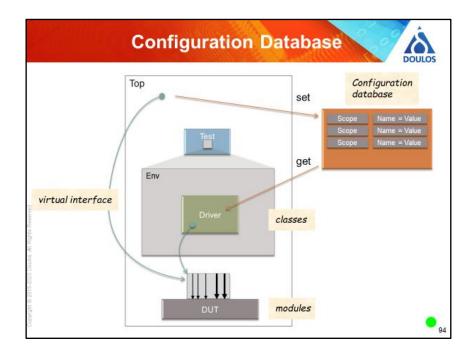

interface dut_if;	module top;
endinterface	<pre>import uvm pkg::*;</pre>
endincerrace	<pre>import my_pkg::*;</pre>
	<pre>dut_if dut_if1 ();</pre>
<pre>module dut(dut_if dif);</pre>	
	<pre>dut dut1 (.dif(dut_if1));</pre>
endmodule	initial
	begin
	<pre>run test("my test");</pre>
	end
	endmodule

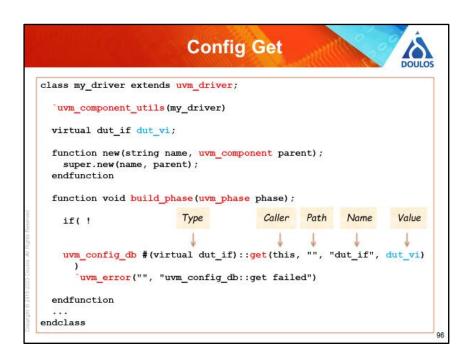

Hello Wo	rld Source Code
<pre>interface dut_if; endinterface module dut(dut_if dif);</pre>	<pre>package my_pkg; import uvm_pkg::*; class my_env extends uvm_env; 'uvm_component_utils(my_env) function new(string name, uvm_component parent); super.new(name, parent); endfunction</pre>
<pre>endmodule module top; import uvm_pkg::*; import my_pkg::*;</pre>	<pre>endclass class my_test extends uvm_test; 'uvm_component_utils(my_test) my_env m_env; function new(string name, uvm_component parent); super.new(name, parent); endfunction</pre>
<pre>dut_if dut_if1 (); dut dut1 (.dif(dut_if1)); initial begin run_test("my_test"); end endmodule</pre>	<pre>function void build_phase(uvm_phase phase); m_env = my_env::type_id::oreate("m_env", this); endfunction task rum_phase(uvm_phase phase); phase.raise_objection(this); #10; 'uvm_info("", "Hello World", UVM_MEDIUM) phase.drop_objection(this); endtask endolass</pre>
endmodule	endpackage: my_pkg

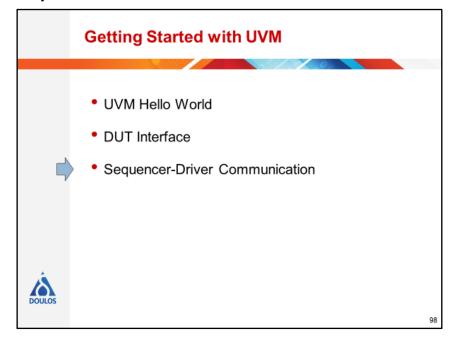
UVM Si	mulation Output
CDNS-UVM-1.2 (20.09-5003) (C) 2007-2014 Mentor Graphics Corporat (C) 2007-2014 Cadence Design Systems, (C) 2006-2014 Synopsys, Inc. (C) 2011-2013 Cypress Semiconductor Co (C) 2013-2014 NVIDIA Corporation	Inc.
<pre>@ 10: reporter [TEST_DONE] 'run' phase UVM_INFO /xcelium20.09/tools//methodol</pre>	<pre>st_top [] Hello World logy/UVM/CDNS-1.2/sv/src/base/uvm_objection.svh(1271) s is ready to proceed to the 'extract' phase</pre>
** Report counts by severity UVM_INFO: 4 UVM_WARNING: 0 UVM_ERROR: 0	https://www.edaplayground.com/x/GjxC
UVM_FATAL: 0 ** Report counts by id [] 1 [[RNTST] 1 [TEST_DONE] 1 [UVM/RELNOTES] 1	
Simulation complete via \$finish(1) at	time 10 NS + 58 **********************************

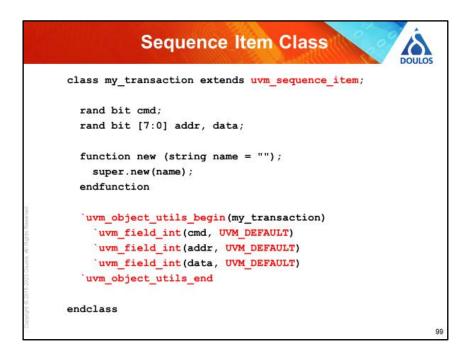


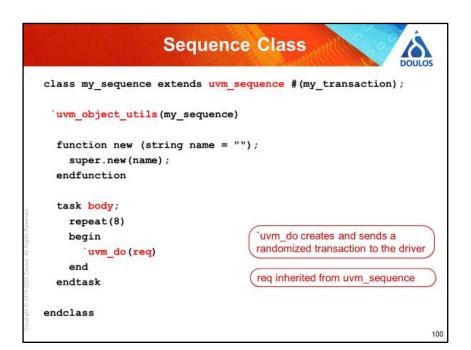
DUT Interface



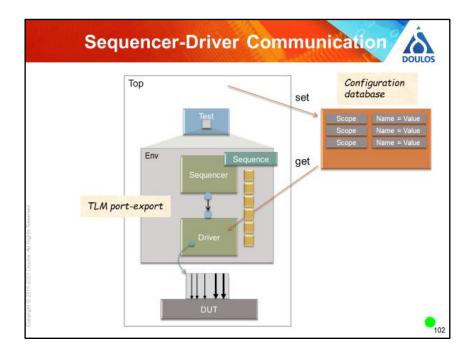

Interfac	e and DUT
<pre>interface dut_if; logic clock, reset;</pre>	<pre>module top; import uvm_pkg::*; import my_pkg::*;</pre>
logic cmd; logic [7:0] addr; logic [7:0] data;	<pre>dut_if dut_if1 (); dut dut1 (.dif(dut_if1));</pre>
endinterface	<pre>initial begin run test("my test");</pre>
<pre>module dut(dut_if dif); import uvm_pkg::*;</pre>	end endmodule
_ dif.c	T received cmd=%b, addr=%d, data=%d" md, dif.addr, dif.data), <mark>UVM_MEDIUM</mark>)
end endmodule	nplementation

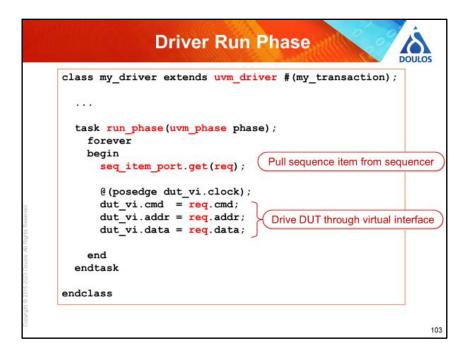

		fig Set	1994		DOULO
					figuration base
module top;					(income in the second
<pre>import uvm_pkg::*;</pre>				Scope	Name = Value
<pre>import my_pkg::*;</pre>			-	Scope Scope	Name = Value Name = Value
<pre>dut_if dut_if1 ();</pre>				Scope	Name - Value
dut dutl (.dif (<pre>dut_if1));</pre>				
••••	Туре	Caller	Path	Name	Value
initial		1	1	1	1
begin	4	*	4	*	*
<pre>uvm_config_db #(v</pre>):: <mark>set</mark> (null	, "*",	"dut_if	", dut_if1)
<pre>run_test("my_test</pre>	:");				
end					
endmodule: top					



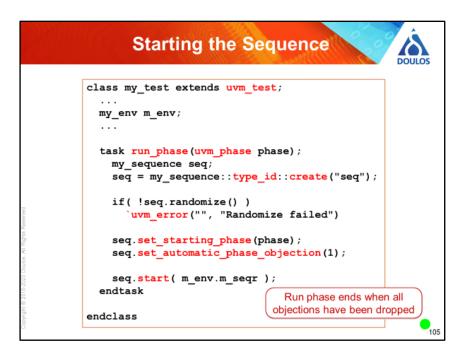

Pin Wiggling	DOULO
<pre>class my_driver extends uvm_driv `uvm_component_utils(my_driver virtual dut_if dut_vi; task run_phase(uvm_phase phase forever begin</pre>	r)

Sequencer-Driver Communication

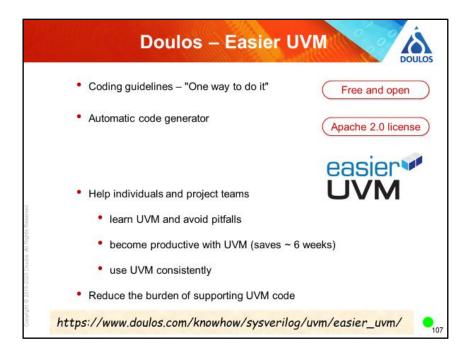




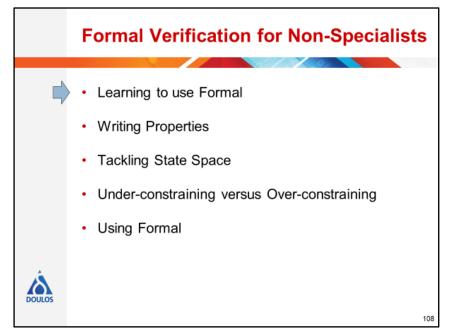
Sequence versus Sequencer	ULOS
<pre>class my_sequence extends uvm_sequence #(my_transaction) endclass</pre>	;
<pre>typedef uvm_sequencer #(my_transaction) my_sequencer;</pre>	
A sequence runs on a sequencer	
uvm_sequence extends uvm_sequence_item extends uvm_object uvm sequencer extends uvm component extends uvm object	

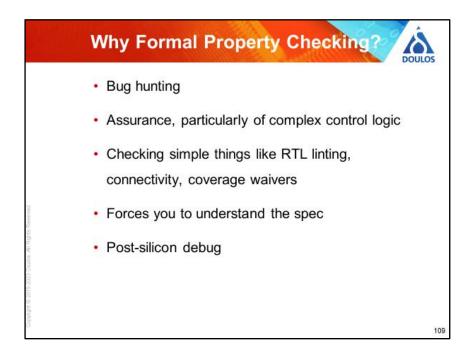


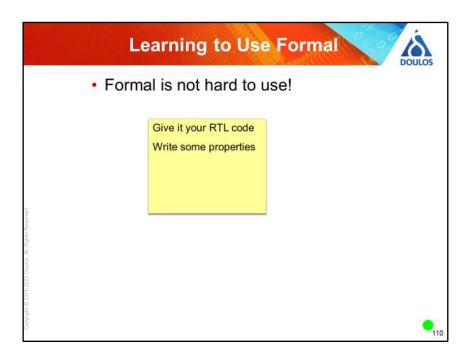
Workbook


Sequencer-Driver Connection \mathbf{i} class my_env extends uvm_env; `uvm_component_utils(my_env) my_sequencer m_seqr; my_driver m_driv; function new(string name, uvm_component parent); super.new(name, parent); endfunction function void build_phase(uvm_phase phase);
 m_seqr = my_sequencer::type_id::create("m_seqr", this);
 m_driv = my_driver ::type_id::create("m_driv", this); endfunction function void connect_phase(uvm_phase phase);
 m_driv.seq_item_port.connect(m_seqr.seq_item_export); endfunction endclass 104

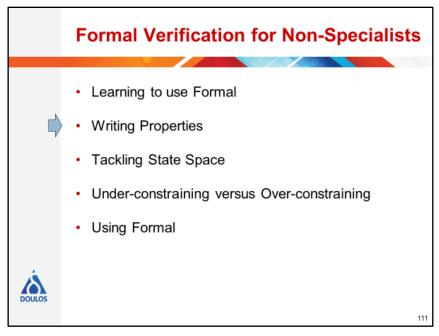
Digital Verification for FPGA and ASIC Designers Workbook 1.0

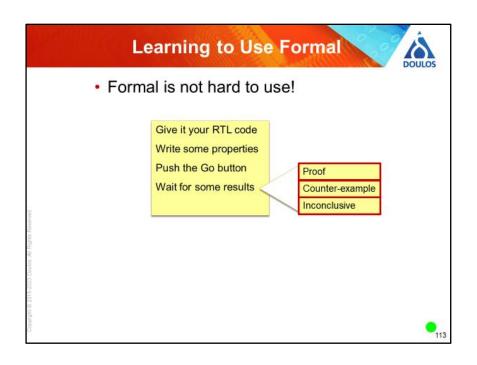



	Next Steps
	Test Test
	Env
115-2023 Daules Jei Frigris Reserved	Checking and Coverage Agent Sequence Sequence Driver Driver
Copyright 00	

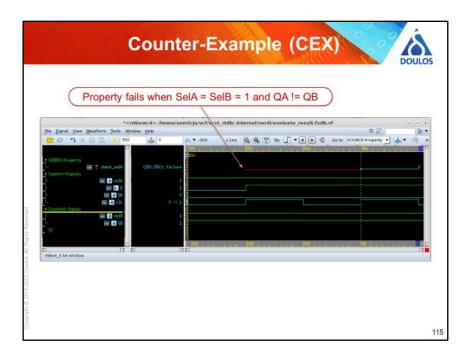

Formal Verification for Non-Specialists

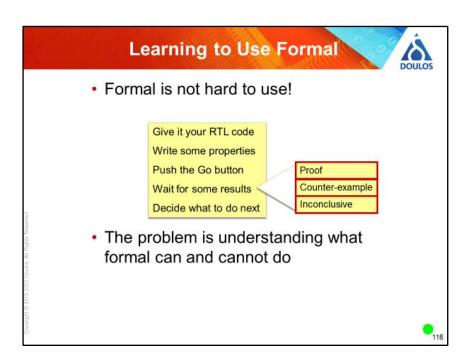
Learning to use Formal

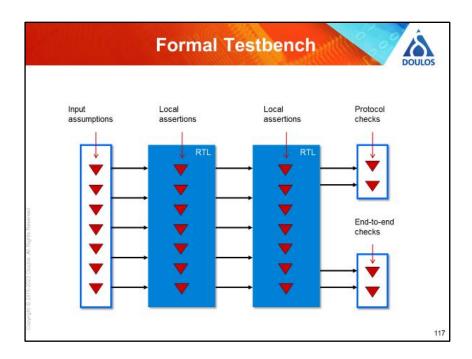




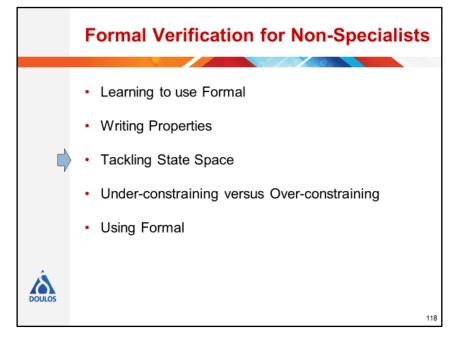
Writing Properties

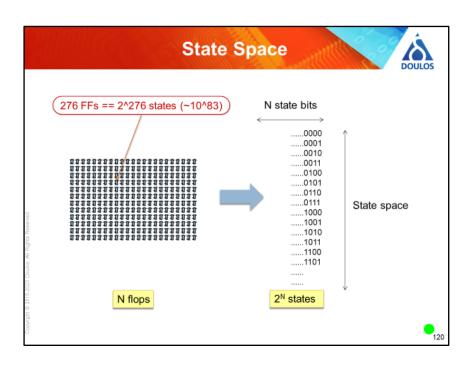


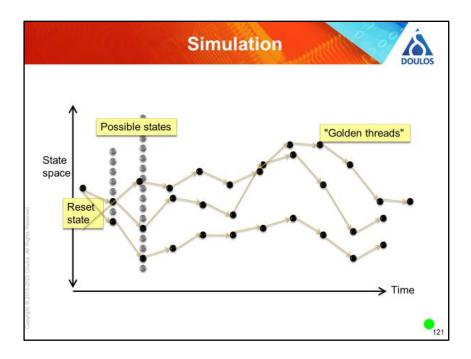

		RTL		
module selAB input logi	22 A A A A A A A A A A A A A A A A A A			
	.c QA, selA, QB,	selB.		
output logi		,		
always @(po	sedge clk)			
begin	-			
	Q <= QA;			
end (selb)	Q <= QB;			
end				Properties
check selA:	assert propert	у (
-	@(posedge cl	k) selA =>	Q == \$pas	st(QA));
check_selB:	assert propert			
	@(posedge cl	k) selB =>	Q == \$pas	st(QB));



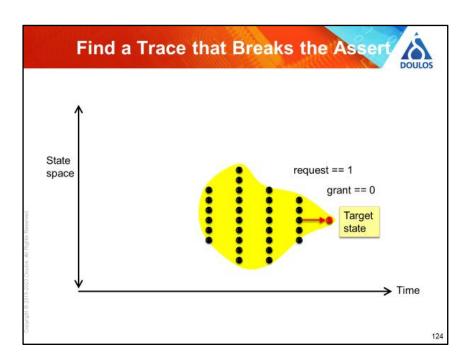
SUMMARY				
	Properties Considered :	4		
	assertions	2		
	- proven	1	(50%)	
	 bounded_proven (user) : 	θ	(0%)	
	 bounded proven (auto) 	θ	(0%)	
			(0%)	
			(50%)	
	- ar_cex :		(0%)	
	- undetermined :		(0%)	
	- unknown :		(0%)	
	- error :		(0%)	
	covers : - unreachable :	2	(0%)	
	 unreachable bounded unreachable (user): 			
			(100%)	
			(0%)	
			(0%)	
			(0%)	
			(0%)	

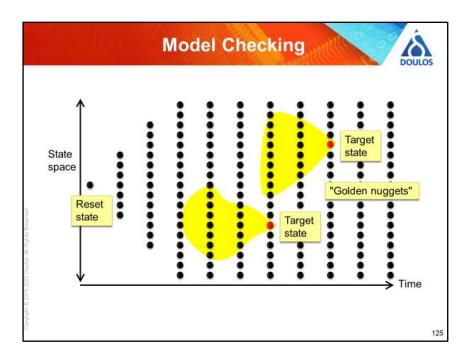




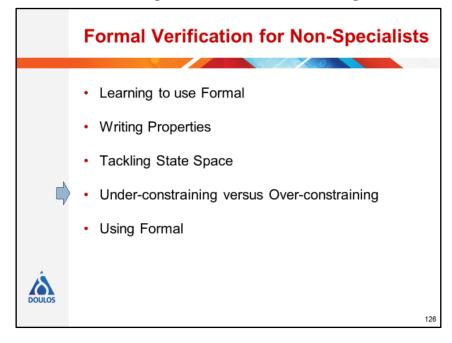


Tackling State Space

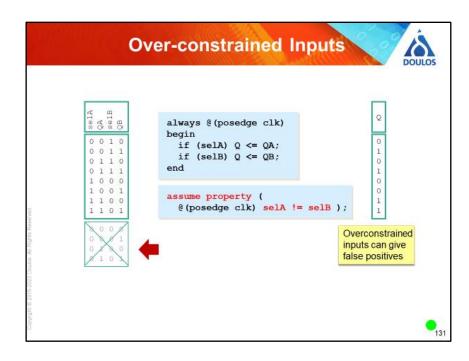




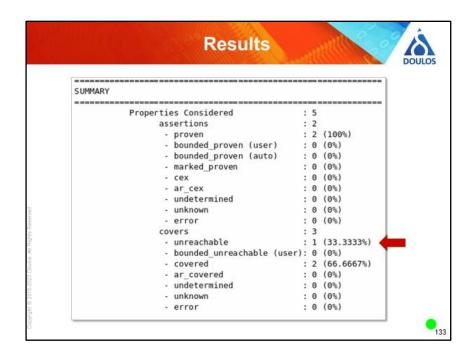
,	•	•	•	•	•	•	•	•	•	•	•
		i	i	i	i			e repre		ed symb	olically,
State space	:	i	i	i	i	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:		:
			i	i	i		i	i		Target	
		i	i	i	i	i	i	i		state	
	:	:	:	:	:	:	:	:	:	:	:
,	.:	:	:	:	:	:	:	:	:	:	→ Time


	Target State
	<pre>assert property (@(posedge clk) request => grant);</pre>
	request • grant
nds Rosserved	Try to find a sequence of states that would make the assertion "fire"
5-2020 Daulos: All Ruj	request == 1 • grant == 0
Copyright 0, 201	9123

Under-constraining versus Over-constraining


Source Pane	- visualize:5			+8
9+Search th	e Source Code Pa 💠 🌳 🗐 🕤 🚺 of 2	🚯 D L 🕃 🔝 COI		V 🖬 🖬 (
1 800	dule selAB (
2 3	input logic clk. 1'bl @			
	input logic QA, selA, QB, selB, 1'bl1'bl 1'b01'b1			
	output logic 0); 1'b0			
5	always @iposedge clk)			
7 t	1'bl_0		Inputs are under-c	onstrained
	if (selA) 0 <= 0A; 1'b1 1 b0 1'b1		inpato are analy	
9	if (selB) 0 <= QB; 1'b1 1 b0 1'b0			
11	end Lease			
12 O	neck celA: assert property ('b0 @(posedge clk) sel# (=>)	to a second s		
	theck_selB: assert property (.po 1.pl		
15	@(posedge clk) selB (=> 0	Enact (OR)		
16	erporeage that sets 100 t	1.00 1.00		
	inodule			
11 010				

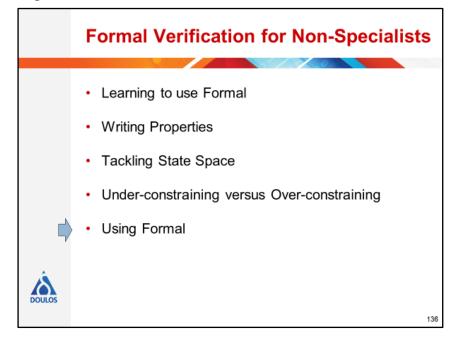
Under-constrained Inputs
Image: constrained inputs often give false negatives Image: constrained inputs often give false negatives Image: constrained inputs often give false negatives
1 1 1 1

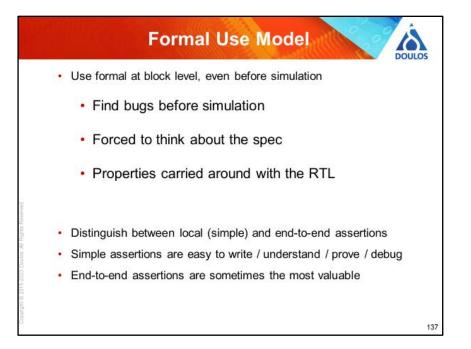

mp	ut Assume Statement
module selAB (
input logic	clk,
	QA, selA, QB, selB,
output logic	Q) ;
always @(pose	edge clk)
begin	
if (selA) (2 <= QA;
if (selB) (Q <= QB;
end	
check selA:	assert property (
	(posedge clk) selA => Q == (QA) ;
check selB:	assert property (
-	<pre>@(posedge clk) selB => Q == \$past(QB));</pre>
assume not 11	: assume property (
	@(posedge clk) !(selA & selB));
endmodule	

Results			Ì
SUMMARY			
Properties Considered	: 4		
assertions	: 2		
- proven	: 2	(100%) 👌	
- bounded_proven (user)		(0%)	
- bounded_proven (auto)	: 0	(0%)	
- marked_proven	: 0	(0%)	
- cex	: 0	(0%)	
- ar_cex	: 0	(0%)	
- undetermined	: 0	(0%)	
- unknown		(0%)	
- error	: 0	(0%)	
covers	: 2		
- unreachable		(0%)	
 bounded_unreachable (us 			
- covered		(100%)	
- ar_covered		(0%)	
- undetermined		(0%)	
- unknown	- 183 D.D.	(0%)	
- error	: 0	(0%)	- 1



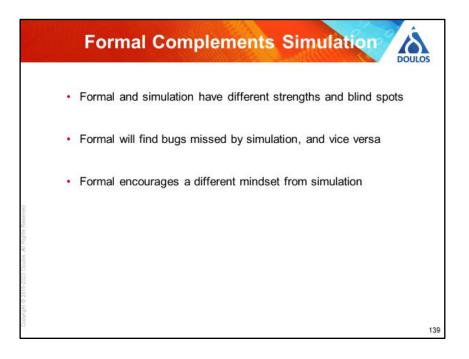
	DOU
always @(pose begin if (selA) (if (selB) (2 <= QA;
end	
check_selA:	<pre>essert property @(posedge clk) selA => Q == \$past(QA));</pre>
check_selB:	<pre>assert property (@(posedge clk) selB => Q == \$past(QB));</pre>
assume_not_11	l: assume property (@(posedge clk) selA != selB);
cover_00:	cover property (@(posedge clk) !selA & !selB);
	Check input not over-constrained





Verifying Assumptions with Cover	DOULOS
<pre>always @(posedge clk) begin if (selA) Q <= QA; if (selB) Q <= QB; end</pre>	
check_selA: assert property (@(posedge clk) selA => Q == \$past(QA));	
<pre>check_selB: assert property (@(posedge clk) selB => Q == \$past(QB)); assume_not_11: assume property (Fix the ass </pre>	umption
<pre>@(posedge clk) !(selA & selB)); cover_00: cover property (@(posedge clk) !selA & !selB);</pre>	
	13


Using Formal



Conclusions and Recommendations

UVM o	or Formal?
Test Reusside ventication environment Vatual sequence Register Layer Agent Agent Agent DUT	
Simulation (UVM)	Formal
Of course!	Target pain points
But maybe not everything	Complement simulation
	Include in verification

www.doulos.com