Some thoughts on theory uncertainties (3) and tools for electroweak corrections

A. Freitas

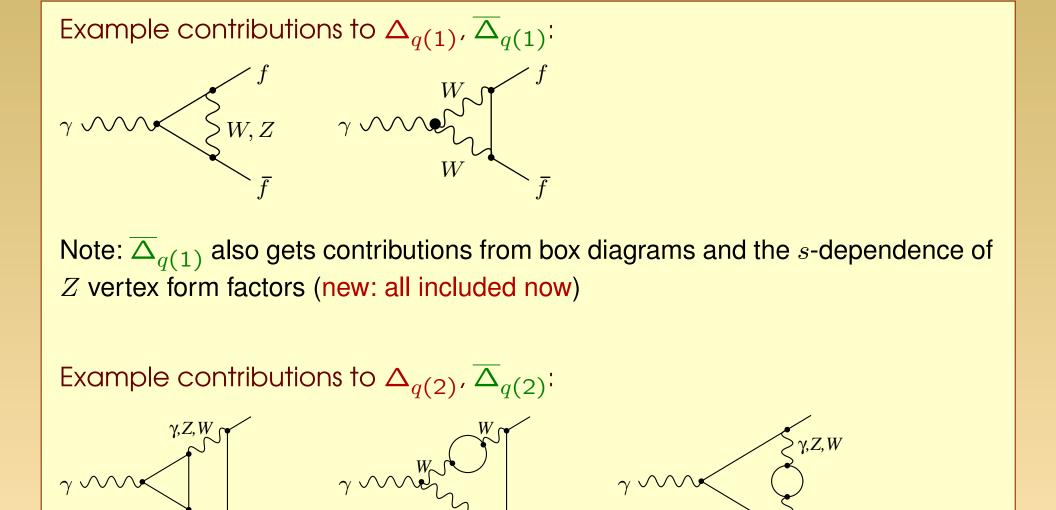
University of Pittsburgh

Including photon exchange and photon form factor estimate: (neglecting boxes and s-dependence of Z form factors)

$$A_{4} = \frac{\sum_{q} X_{q} \ 4\left(\frac{v_{\ell}}{a_{\ell}} \frac{v_{q}}{a_{q}} + \frac{v_{\ell q}(s)}{a_{\ell} a_{q}}\right)}{\sum_{q} X_{q} \left(1 + \frac{v_{\ell}^{2}}{a_{\ell}^{2}} + \frac{v_{q}^{2}}{a_{q}^{2}} + \frac{v_{\ell q}^{2}(s)}{a_{\ell}^{2} a_{q}^{2}}\right)}$$

 $X_q = f_q(x_1)f_{\bar{q}}(x_2) + f_{\bar{q}}(x_1)f_q(x_2)$

$$v_{\ell q}(s) = v_{\ell} v_{q} + \frac{s - M_{Z}^{2} - iM_{Z}\Gamma_{Z}}{s} e^{2} e_{q} \left(1 + \overline{\Delta}_{q}\right)$$


$$\frac{v_{\ell}}{a_{\ell}} = 1 - 4s_{\ell}^2, \qquad \qquad s_{\ell}^2 \equiv \sin^2 \theta_{\text{eff}}^{\ell}$$

$$\frac{v_q}{a_q} = 1 - 4|e_q|(s_\ell^2 + \Delta_q)$$

$$\Delta_q = \Delta_{q(1)} + \Delta_{q(2)}$$

$$\Delta_q = \underbrace{\Delta_{q(1)}}_{\text{known}} + \underbrace{\Delta_{q(2)}}_{\text{unknown}}$$

 $\Delta_{q(2)} \text{ is known (in SM) for leading Z pole term}$ $\overline{\Delta}_{q(2)} = \pm \overline{\Delta}_{q(1)} \times \frac{g^2}{16\pi^2} n_f, \qquad n_f = 6 + 6N_c \qquad \text{(maybe underestimate?)}$

Z-pole 2-loop flavor dependence:

Assume: all EW 2-loop corrections are a source theory uncertainties

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use G_{μ}, M_{W}, M_{Z} as inputs, perturb. exp. in G_{μ}

Scheme:	lpha'	lpha	G_{μ}
$\Delta_{u(\alpha^2)} [10^{-5}]$	-1.74	-1.82	-1.45
$\Delta_{d(\alpha^2)}$ [10 ⁻⁵]	-1.49	-1.67	-0.88

Inputs: $M_Z = 91.1876 \text{ GeV}, M_W = 80.385 \text{ GeV}, M_H = 125.7 \text{ GeV}$

 $m_{\rm t} = 173.5 \; {\rm GeV}, \; \Delta \alpha = 0.059, \; \alpha_{\rm s} = 0.1184, \; G_{\mu} = 1.16638 \times 10^{-5} \; {\rm GeV}^{-2}$

Z-pole 2-loop flavor dependence:

Assume: all EW 2-loop corrections are a source theory uncertainties

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α, G_{μ}, M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use G_{μ}, M_{W}, M_{Z} as inputs, perturb. exp. in G_{μ}

Scheme:	α'	α	G_{μ}	
$\Delta_{u(\alpha^2)} [10^{-5}]$	-1.74	-1.82	-1.37	
$\Delta_{d(\alpha^2)}$ [10 ⁻⁵]	-1.49	-1.67	-0.88	
including non-factoriz				Czarnecki, Kühn '96
$\Delta_{u(\alpha^2 + \alpha \alpha_s)} [10^{-5}]$	+1.46	+1.38	+1.52	Harlander, Seidensticke Steinhauser '97
$ \begin{array}{c} \Delta_{u(\alpha^{2}+\alpha\alpha_{\mathrm{s}})} \left[10^{-5}\right] \\ \Delta_{d(\alpha^{2}+\alpha\alpha_{\mathrm{s}})} \left[10^{-5}\right] \end{array} $	+2.33	+2.14	+2.46	

Inputs: $M_Z = 91.1876 \text{ GeV}, M_W = 80.385 \text{ GeV}, M_H = 125.7 \text{ GeV}$ $m_t = 173.5 \text{ GeV}, \Delta \alpha = 0.059, \alpha_s = 0.1184, G_\mu = 1.16638 \times 10^{-5} \text{ GeV}^{-2}$ Combine $\Delta_{q(2)}$ numbers with $\overline{\Delta}_{q(2)}$ estimate as sources of th. unc. Impact of missing EW 2-loop contributions (including EW×QCD):

 $\delta A_4/A_4$: [10⁻³]

$m_{\ell\ell}$ [GeV]	Scheme:	α'	α	G_{μ}
60		4.2	1.44	1.24
70		2.1	0.80	0.65
80		9.9	3.1	3.02
M_Z -2		38.6	17.1	12.9
$M_{Z} - 1$		6.8	3.1	2.5
M_{Z}		0.41	0.43	0.43
M_Z +2		2.4	0.68	0.56
M_{Z} +1		3.9	1.3	1.1
100		6.3	2.3	1.9
110		5.5	2.0	1.6
130		2.9	1.0	0.80
150		1.1	0.33	0.23

- Dominated by photon form factor unc. $\overline{\Delta}_q$
- New: Error estimate for A₄
 is larger than what I showed
 before (due to including all
 NLO contributions)
- New: Schemes that use G_µ have smaller corrections/ uncertainties

New: only EW 2-loop corrections beyond $\Delta \rho$ are a source of th. unc. Impact of missing EW 2-loop contributions (including EW×QCD):

 $\delta A_4/A_4$: [10⁻³]

$m_{\ell\ell}$ [GeV]	Scheme:	lpha'	lpha	G_{μ}
60		3.0	1.8	1.76
70		1.5	0.89	0.89
80		7.1	4.3	4.25
M_Z -2		27.6	19.2	17.2
$M_{Z} - 1$		5.0	3.3	3.2
M_{Z}		0.42	0.43	0.43
M_Z +2		1.6	0.92	0.89
M_Z +1		2.7	1.6	1.6
100		4.5	2.7	2.7
110		3.9	2.4	2.3
130		2.0	1.2	1.2
150		0.75	0.38	0.37

- Error estimate for α' scheme reduced by ~30%
- Error estimate for other schemes increased (probably coincidence – limitation of method)

Comments and discussion points

- New: Dependence of form factors on $s = m_{\ell\ell}$ and box contributions are included, resulting in larger error estimate
- New: Error estimate is not systematically reduced by including h.o. $\Delta \rho$ corrections
- Coherent treatment of O(αα_s) for full process qq̄ → ℓ⁺ℓ⁻ missing: include in analysis, or use available results for error estimate?
 [should be added in quadr. to O(α²) estimate]
- Note: Evaluation carried out with GRIFFIN library Chen, Freitas '22

GRIFFIN: A C++ library for EW radiative correction in fermion scattering and decay processes 7/16

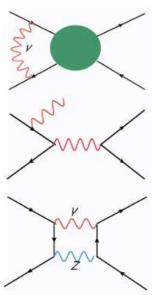
Motivation:

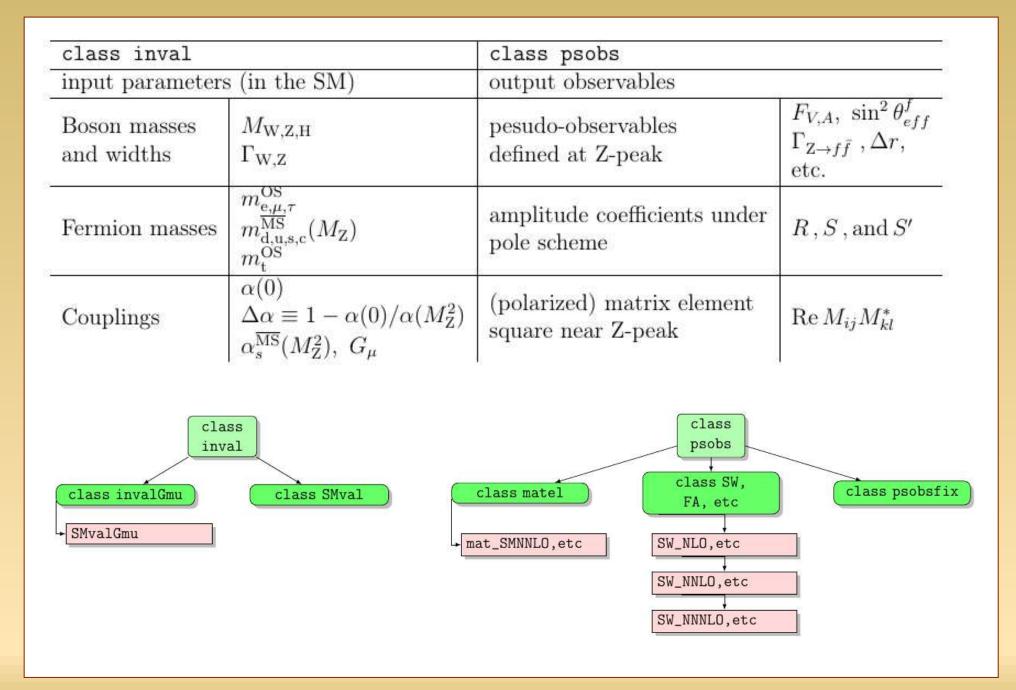
- Exisiting tools (ZFITTER/DIZET, TOPAZ0, ...) developed for LEP era contain many SM resuls, including QED radiation
 Bardin et a
 - Bardin et al. '99 Montagna et al. '98

- Difficult to expand and maintain (Fortran77, not fully gauge-invariant framework, ...)
- QED more effectively handled with MC generators
- For future applications / colliders: need EW library that is ...
 - ... modular / object-oriented
 - ... based on formally gauge-invariant setup
 - ... can be extended to include BSM phsyics (also SMEFT), new processes, etc.

Setup

Framework for $f\bar{f} \to Z^*/\gamma * \to f'\bar{f}'$:


Laurent expansion about Z-pole + regular matrix element off-resonance


$$M_{ij} = M_{ij}^{\exp,s_0} + M_{ij}^{\operatorname{noexp}} - M_{ij}^{\exp,M_Z^2},$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$

$$M_{ij}^{\exp,s_0} = \frac{R_{ij}}{s - s_0} + S_{ij} + (s - s_0)S'_{ij} + \dots \qquad s_0 \equiv M_Z^2 - iM_Z\Gamma_Z$$
Stuart '91; Veltman '94

QED contributions have been subtracted

Co	orrections ente	ring throug	ςh $\delta \rho$:
	drho2aas	$\mathcal{O}(lpha_{ m t} lpha_{ m s})$	[3, 4]
	drho2a2	$\mathcal{O}(\alpha_{ m t}^2)$	[5-9]
*	drho3aas2	$\mathcal{O}(\alpha_{\rm t} \alpha_{\rm s}^2)$	[10, 11]
*	drho3a2as	$\mathcal{O}(\alpha_{\rm t}^2 \alpha_{\rm s})$	[12, 13]
*	drho3a3	$\mathcal{O}(lpha_{ m t}^3)$	[12, 13]
*	drho4aas3	$\mathcal{O}(lpha_{ m t} lpha_{ m s}^3)$	[14-16]
Fu	Ill corrections	to F_A^f , \sin^2	θ_{eff}^{f} :
*	res2ff	$\mathcal{O}(\alpha_f^2)$	[17-19]
*	res2fb	$\mathcal{O}(\alpha_f \alpha_b)$	[17-20]
*	res2bb	$\mathcal{O}(\alpha_b^2)$	[21-25]
*	res2aas	$\mathcal{O}(\alpha \alpha_{\rm s})$	[26–28] (correction to internal gauge-boson self-energies)
*	res2aasnf	$\mathcal{O}(\alpha \alpha_{\rm s})$	[29–34] (non-factorizable final-state corrections for $f = q$)
*	res3fff	$\mathcal{O}(\alpha_f^3)$	[35]
*	res3ffa2as	$\mathcal{O}(\alpha_f^2 \alpha_s)$	[36]

Sample program

```
#include <iostream>
using namespace std;
#include "EWPOZ2.h"
#include "xscnnlo.h"
#include "SMval.h"
int main()
{
  SMval myinput; // convert masses from PDG values to complex pole scheme
 myinput.set(al, 1/137.03599976);
  myinput.set(MZ, 91.1876);
 myinput.set(MW, 80.377);
 myinput.set(GamZ, 2.4952);
 myinput.set(GamW, 2.085);
  myinput.set(MH, 125.1);
 myinput.set(MT, 172.5);
 myinput.set(MB, 2.87);
 myinput.set(Delal, 0.059);
 myinput.set(als, 0.1179);
  cout << endl << "Complex-pole masses: MW=" << myinput.get(MWc) << ", MZ="</pre>
    << myinput.get(MZc) << endl << endl;
```

```
// compute matrix element for ee->dd with vector coupling in initial
// state and vector coupling in final state
int ini = ELE, fin = DQU, iff = VEC, off = VEC;
```

cout << "=== Matrix element for ee->dd (i=e, f=d) ===" << endl << endl;

// compute vertex form factors:

```
FA_SMNNLO FAi(ini, myinput), FAf(fin, myinput);
SW_SMNNLO SWi(ini, myinput), SWf(fin, myinput);
cout << "F_A^i (NNLO+) = " << FAi.result() << endl;
cout << "F_A^f (NNLO+) = " << FAf.result() << endl;
cout << "sineff^i (NNLO+) = " << SWi.result() << endl;
cout << "sineff^f (NNLO+) = " << SWf.result() << endl;
cout << endl;</pre>
```

Sample program (3)

```
double cme, // center-of-mass energy
         cost = 0.5; // scattering angle
  Cplx res1, res2;
  cout << "SM matrix element M_VV for cos(theta)=" << cost << ": " << endl;
  // compute matrix element for ee->dd using SM form factors:
 mat_SMNNLO M(ini, fin, iff, off, FAi, FAf, SWi, SWf, cme*cme, cost,
  myinput);
  cout << "sqrt(s)\t\ttot. result\t\toff-resonance contrib." << endl;</pre>
  for(cme = 10.; cme <= 190.; cme += 20.)
  Ł
   M.setkinvar(cme*cme, cost);
   res1 = M.result();
   res2 = M.resoffZ();
   cout << cme << " \t" << res1 << " \t" << res2 << endl;
  }
 cout << endl;
 return 0:
}
```

Sample program (output)

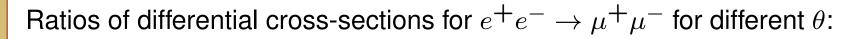
```
Complex-pole masses: MW=80.35, MZ=91.1535
=== Matrix element for ee->dd (i=e, f=d) ===
F_A^i (NNLO+) = (0.034499,0)
F_A^f (NNLO+) = (0.0345443,0)
sineff^{i} (NNLO+) = (0.231172,0)
sineff^{f}(NNLO+) = (0.230985,0)
SM matrix element M_VV for cos(theta)=0.5:
sqrt(s)
                tot. result
                                         off-resonance contrib.
10
        (0.000316739, -5.58082e-06)
                                          (0.000309429, -5.53734e-06)
30
        (3.53793e-05, -5.99317e-07)
                                         (2.84458e-05, -5.59139e-07)
        (1.25851e-05,-1.90789e-07)
                                         (6.4247e-06, -1.59184e-07)
50
                                         (1.19433e-06,-4.81728e-08)
70
        (6.07798e-06, -5.97311e-08)
        (-7.31188e-07, -3.55673e-06)
                                          (8.7104e-09,-1.80673e-09)
90
110
        (3.14635e-06, -1.62001e-07)
                                         (4.59289e-07,1.10821e-08)
        (2.12596e-06, -7.90095e-08)
                                         (1.82894e-06, 1.92144e-08)
130
150
        (1.5668e-06,-5.34561e-08)
                                         (3.83515e-06, 2.49419e-08)
170
        (1.20884e-06, -3.97403e-08)
                                         (6.35319e-06,2.97998e-08)
        (9.60973e-07, -3.33532e-08)
                                          (9.31833e-06,3.12732e-08)
190
```

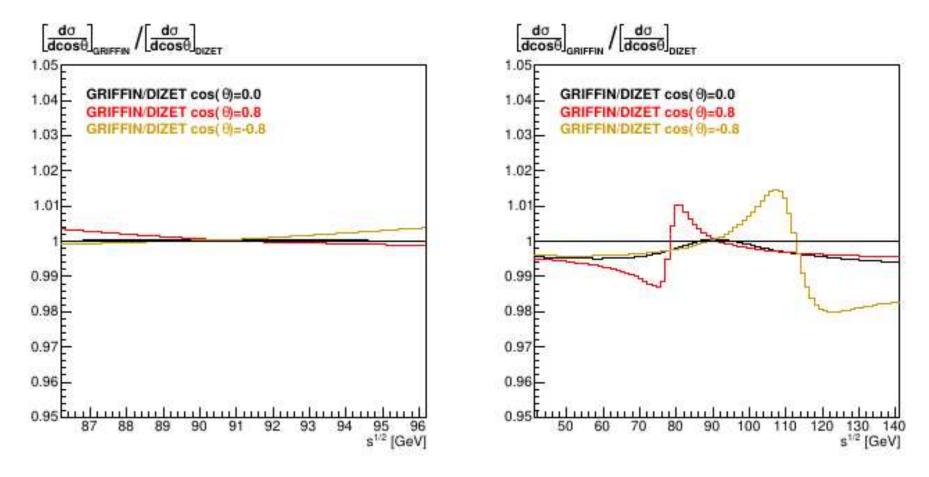
Comparison GRIFFIN 1.0 vs. DIZET 6.45

15/16

Numerical Results:

$$|\rho^f_Z| = \frac{2\sqrt{2}F^f_A}{G_\mu M_Z^2}$$


	$ \rho_Z^f $		$\sin^2 heta^f_{ ext{eff}}$		$\Gamma_{Z \to f\bar{f}}$	
	Dizet 6.45	GRIFFIN	Dizet 6.45	GRIFFIN	Dizet 6.45	GRIFFIN
νī	1.00800	1.00814	0.231119	NAN	0.167206	0.167197
$\ell \bar{\ell}$	1.00510	1.00519	0.231500	0.231534	0.083986	0.083975
$u\bar{u}$	1.00578	1.00573	0.231393	0.231420	0.299938	0.299958
$d\bar{d}$	1.00675	1.00651	0.231266	0.231309	0.382877	0.382846
$b\bar{b}$	0.99692	0.99420	0.232737	0.23292	0.376853	0.377432


	Dizet 6.45	GRIFFIN all orders	$egin{aligned} & \mathrm{GRIFFIN} \ & \mathcal{O}(lpha, lpha^2, lpha_t lpha_s, lpha_t lpha_s^2) \end{aligned}$
Δr	$3.63947 imes 10^{-2}$	3.68836×10^{-2}	$3.63987 imes 10^{-2}$

Not a one-one-one match. (no leading N3LO implemented in dizet v.6.45)

- most numbers are in agreement up to at least **4-digit**. The actual discrepancy is in the realm of missing N3(4)LO.
- fictitious discrepancies stem from the input scheme/definition of the form factors/EWPOs.

Comparison GRIFFIN 1.0 vs. DIZET 6.45

- $= \lesssim \mathcal{O}(10^{-3})$ agreement near Z-pole (~NNLO precision)
- %-level agreement away from Z pole (NLO prec., different implementations)

[Note: enhanced corrections when tree-level matrix element is small]