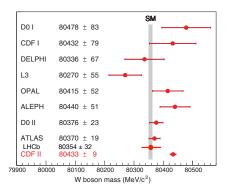
On the determination of the W mass at hadron colliders

Paolo Torrielli

Università di Torino and INFN


LHC EW precision sub-group meeting, 2023/03/02

Based on: Rottoli, PT, Vicini, hep-ph/2301.04059

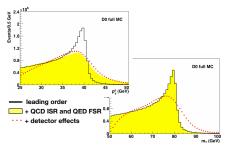
Paolo Torrielli

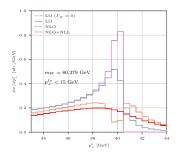
On the determination of the *W* mass at hadron colliders

Role of M_W

- *M_W* fundamental SM parameter, important input to global EW fits.
- Quantum corrections to M_W sensitive to M_{top}, M_H, allowing stringent consistency tests on the SM.
- Heading for 10⁻⁴ relative accuracy on its determination.
- High time to assess accuracy of tools and methodologies employed for M_W extraction from experimental data.

M_W determination at hadron colliders

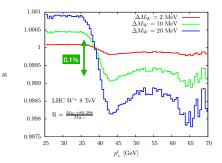

- In charged-current DY (CCDY), neutrino reconstruction possible in the transverse plane: p^ν_t inferred from missing ∉_t.
- Define relevant transverse observables: p_t^{ℓ} , and $M_t^{\ell\nu} = \sqrt{2 p_t^{\ell} p_t^{\nu} (1 \cos \Delta \phi^{\ell\nu})}$.
- p_t^{ℓ} and $M_t^{\ell\nu}$ spectra display a kinematical jacobian peak whose position is related to M_W : e.g.


$$\frac{d\sigma}{dp_t^{\ell}} \propto \frac{1}{\sqrt{1 - (2\,p_t^{\ell}/\hat{s})^2}} \sim \frac{1}{\sqrt{1 - (2\,p_t^{\ell}/M_W)^2}}$$

• Enhanced sensitivity to M_W variations: $\Delta M_W/M_W \sim 10^{-4}$ modifies p_t^{ℓ} at the 10⁻³ level.

Jacobian-peak description

- Description of the jacobian-peak shape is sensitive to a variety of theoretical and experimental effects.
- Soft radiation causes integrable singularity (Sudakov shoulder [Catani,Webber 197]) in the fixed-order description beyond LO.
- QCD resummation required.



- ► QCD ISR + QED FSR dominate smearing of the jacobian peak in p^ℓ_t: need for excellent theoretical predictions.
- Detector effects dominate smearing of the jacobian peak in M^{ℓν}_t: need excellent experimental control on neutrino reconstruction, challenging at the LHC.

Standard extraction of M_W from jacobian-peak shape: template fitting

- Compute theoretical distributions for p^ℓ_t (or M^{ℓν}_t) with different hypotheses M_{W,i} for the W mass (template distributions).
- Compare templates with experimental measurements in a given fit window; calculate χ²_i for each M_{W,i} hypothesis.
- Extract M_W as the $M_{W,i}$ hypothesis associated to the smallest χ_i^2 .

- Theory prediction must be sufficiently close to experimental data to get reasonable minimum χ².
- Need to control shapes at the permille level to resolve ΔM_W/M_W ~ 10⁻⁴.
- But: even state-of-the-art N³LO+N³LL QCD predictions for p^ℓ_t have uncertainties at the percent level (see e.g. [Chen, Gehrmann, Glover, Huss, Monni, Re, Rottoli, PT, 2203.01565]).

The role of tuning in template fits

Events per GeV

1.4 Ratio to ref

0.8 0.6

- Procedure can be restored leveraging high-precision p_t^Z data in neutral-current Drell Yan (NCDY).
- Leaving formal accuracy aside, flexible enough parton shower can be tuned to perfectly describe NCDY data.
- Tuning performed on the parameters of a non-perturbative (NP) QCD model.
- Fit region LHCb 15 1.7 fb⁻¹ GPVTHIA (ref.) 10 LHCb 1.7 fb⁻¹ After fi WHEGPVTHA (ref.) 90 YTHIANNPDF31 Ratio to ref 0.8 0.6 Events / 0.5 GeV ATI AS A Dot 14 120 $^{2}/dof = 29/39$ 100 20 Data / Pred. 1.02 0.99 0.9 p_[GeV]
- Same tuning parameters are used to prepare CCDY template distributions.
- After tuning, χ^2 of template distributions under control.

Paolo Torrielli

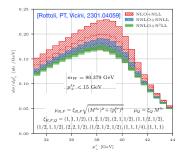
On the determination of the W mass at hadron colliders

Potential concern about template fitting

Conceptual

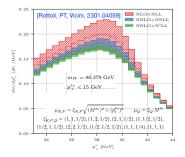
- ► Heavily reliant on tuning to data. Dominated by NP physics, the least understood.
- Potential BSM effects absorbed in the tuning parameters.

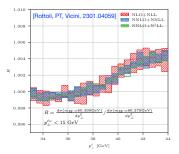
Practical


- Based on tools with low formal accuracy, typically NLO+(N)LL: higher-order perturbative information mimicked by NP tuning parameters.
 Significant progress in perturbative understanding of the DY process not exploited.
- The definition of χ^2 does not include theoretical uncertainties, owing to non-statistical nature of scale variations.
- Tuning does not include theoretical uncertainties: one should assess how tuning parameters depend on scale choices, and propagate the dependence to CCDY.
- Assumes universality of NP model: parameters extracted from NCDY applied to CCDY.
- ▶ Does not assess uncertainty on information transfer from NCDY p_t^Z to CCDY p_t^ℓ (or $M_t^{\ell\nu}$).

Robust assessment of theoretical uncertainties is lost in data-driven approach.

A new observable for M_W determination

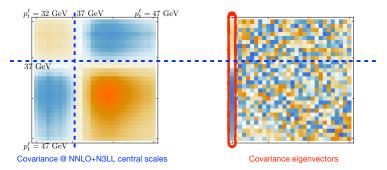

p_t^ℓ distribution in CCDY


- ▶ p^ℓ_t spectrum at ±2% accuracy (9-point scale variation) using state-of-the-art QCD predictions. N³LL from RadISH [Bizon, Monni, Re, Rottoli, PT, '17,'18,'19,'21], NNLO from MCFM [Campbell, Neumann, '19].
- Including resummation cures integrable singularity: physical description of the jacobian peak.
- ► Peak position shifted from $M_W/2$ to ~ 38.5 GeV by QCD resummation and Γ_W effects.

p_t^ℓ distribution in CCDY

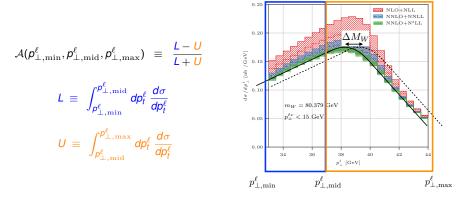
- ▶ p^ℓ_t spectrum at ±2% accuracy (9-point scale variation) using state-of-the-art QCD predictions. N³LL from RadISH [Bizon, Monni, Re, Rottoli, PT, '17,'18,'19,'21], NNLO from MCFM [Campbell, Neumann, '19].
- Including resummation cures integrable singularity: physical description of the jacobian peak.
- ► Peak position shifted from $M_W/2$ to ~ 38.5 GeV by QCD resummation and Γ_W effects.
- Ratio of p^f_ℓ spectra with different M_W hypotheses is largely independent of QCD approximation (for resummed predictions). Mild dependence only in uncertainty band.
- Sensitivity to M_W variations stems from W propagation and decay, factorised from QCD ISR.
- ► Sensitivity to $\Delta M_W/M_W \sim 10^{-4}$ well resolvable beyond theoretical-uncertainty band.

Covariance matrix w.r.t. M_W variations (I)

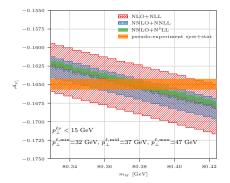

• Given *N* bins σ_i around the p_t^{ℓ} jacobian peak, their sensitivity to M_W can be quantified by constructing the covariance matrix

$$\mathcal{C}_{ij}^{(M_W)} = \langle \sigma_i \, \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle, \qquad \langle x \rangle = \frac{1}{p} \sum_{k=1}^{p} x_{(k)},$$

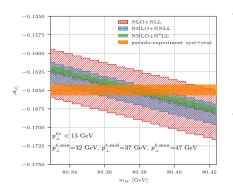
where p is the number of M_W hypotheses considered.


- ▶ Diagonalisation of $C^{(M_W)}$ gives *N* orthogonal p_t^{ℓ} -bin combinations (eigenvectors).
- Corresponding eigenvalues represent the sensitivity of eigenvectors to M_W variations.

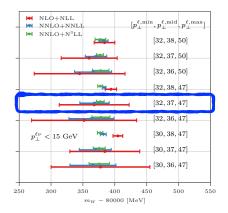
Covariance matrix w.r.t. M_W variations (II)


- First eigenvalue dominates (~ 99%): bulk of M_W sensitivity captured by a single bin combination.
- Stemming from the fact that the dominant effect of ΔM_W is a rigid shift of the spectrum by $\Delta M_W/2$.
- Coefficients of the dominant eigenvector change sign around $p_t^\ell \sim 37$ GeV.
- Define a simple (theoretically and experimentally) observable mimicking dominant covariance eigenvector: jacobian asymmetry.

The jacobian asymmetry $\mathcal{A}_{p_t^{\ell}}$


- Simple observable constructed as combination of fiducial rates in relatively wide p_t^{ℓ} bins.
- A single scalar number depending only on the bin edges, measurable via counting.
- ► At fixed bin edges, $+\Delta M_W$ shifts p_t^{ℓ} spectrum by $\sim +\Delta M_W/2$, depleting *L* and populating *U*: asymmetry decreases linearly if $p_{\perp,\text{mid}}^{\ell}$ is at the left of the peak.

$\mathcal{A}_{p_{t}^{\ell}}$ sensitivity to M_{W} (I)

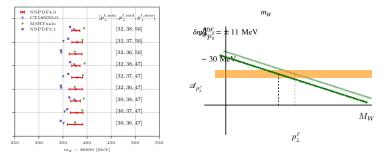

- Linear sensitivity to M_W stems from linear dependence of peak position.
- Sensitivity (slope) largely independent of QCD approximation/scale: reflecting factorisation of QCD production from M_W-sensitive propagation/decay.
- Expected to carry over to NP QCD.
- Slope related to the magnitude of the first covariance eigenvalue for the considered range.
- Slope depends on the value of the bin edges [p^ℓ_{⊥,min}, p^ℓ_{⊥,mid}, p^ℓ_{⊥,max}].

$\mathcal{A}_{p_t^{\ell}}$ sensitivity to M_W (II)

- $\mathcal{A}_{p\ell}$ = combination of fiducial rates.
 - Excellent perturbative QCD convergence.
 - Importance of higher-order results for high-accuracy prediction.
- $\mathcal{A}_{p_{\star}^{\ell}}$ = based on wide p_{t}^{ℓ} bins $\mathcal{O}(5-10 \text{ GeV})$.
 - Small statistical/systematic errors.
 - Viability to unfold detector effects: combination of different experimental M_W determinations.
- M_W simply extracted as the intersection of theoretical and experimental lines.
- $\Delta M_W \sim \pm 15$ MeV from asymmetry measurement seems feasible experimentally. Experimental error band obtained assuming 0.1% error on the measurement of *L* and *U* and no correlation. Statistical error ~ 10 times smaller already with $\mathcal{L} = 140$ fb⁻¹.

$\mathcal{A}_{p_t^\ell}$ dependence on p_t^ℓ bin edges

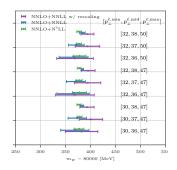
- Perturbative convergence generally very well behaved.
- Importance of including N³LL to assess quality of perturbative convergence.
 Perturbative stability checked beyond mere scale variation.
- Some trade-off between sensitivity (improving at higher p^ℓ_{⊥,mid}) and perturbative convergence (improving at lower p^ℓ_{⊥,mid}).
- $\Delta M_W \sim \pm 5$ MeV achievable from perturbative QCD based on CCDY alone.

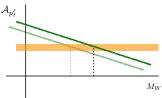

Including further effects

So far only dealt with perturbative QCD.

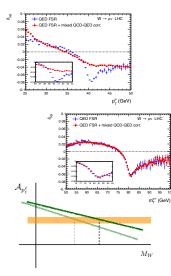
This is the starting point for a complete classification and quantitative assessment of all effects sensitive to M_W variations.

- Impact of PDFs and profiling.
- Impact of NP QCD modelling.
- QED and mixed QCD-EW perturbative corrections.
- Systematic covariance studies: beyond asymmetry.

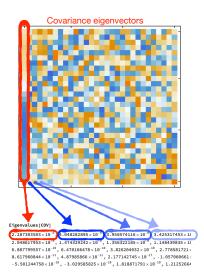

Effect on asymmetry from PDF choice



- ▶ Variations from 100 NNPDF4.0 NNLO replicas on NLO+NLL result: $\Delta M_W \sim \pm 12$ MeV.
- Spread from 3 other PDF sets (central replica) on N3LL+NNLO result: $\Delta M_W \sim 30$ MeV.
- Asymmetry slope unaffected: factorisation of initial-state effects from W propagation/decay.
- ▶ PDF spread can be reduced to few MeV using additional p_t^{ℓ} bins, combination of different rapidity windows (forward and central rapidities anti-correlated) [Bozzi, Citelli, Vesterinen, Vicini, '15; Bagnaschi, Vicini, '19], combination of results from W^+ and W^- .


Toy study on effect of NP modelling

- ▶ From NNLO+NNLL NCDY predictions, compute p_t^Z reweighing factors to match NCDY 'data' (NNLO+N³LL central) → mimic tuning. One factor per scale choice.
- Apply rewgeighing factors to NNLO+NNLL CCDY p_t^{ℓν} spectrum; compare with CCDY 'data' (NNLO+N³LL central).
- $p_t^{\ell\nu}$ and p_t^{ℓ} distribution after reweighing agree better with CCDY 'data', but maintain some shape difference.
- QCD uncertainty on reweighting robustly estimated only using one reweighing factor per scale choice.
- Uncertainty on M_W of same size (or larger) as that of the starting NNLO+NNLL distribution, not of the target NNLO+N³LL 'data': importance of accurate perturbative starting point for assessing NP effects.
- NP = additional effect to precisely calculate asymmetry value (slope unaffected), not the central ingredient of M_W extraction, as for template fitting.



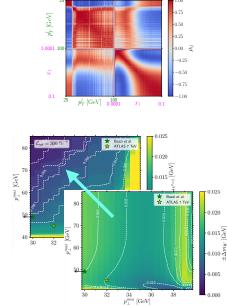
Importance of EW effects

- Significant effects from QED FSR and from mixed QCD-EW corrections at the jacobian peak for p^t_t (see e.g. [Carloni, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini, 1612.02841]).
- Effects only from QED FSR at the jacobian peak for M^{ℓν}_t.
- QED FSR affect both asymmetry value and slope.
- Smearing of p_t^ℓ distribution expected, leading to slight M_W-sensitivity loss.

Covariance studies beyond jacobian asymmetry

- Effect of ΔM_W on p_t^ℓ is a shift: sensitivity to M_W mainly encoded in primary eigenvector (~asymmetry) representing translations (Eigen[1]/Tr[COV] ~ 0.99).
- Secondary eigenvalues extremely suppressed
- Covariance allows systematic classification of eigenvectors according to M_W sensitivity.
- Secondary eigenvectors can be separately analysed (if need be) and included once their perturbative stability is established.
- Not possible with template fitting, all secondary eigenvectors lumped with the first: very little gain in sensitivity at the price of much more noisy analysis.
- Under study: refinement of asymmetry definition to better match dominant covariance eigenvector.

Outlook


Jacobian asymmetry $\mathcal{A}_{p_{\star}^{\ell}}$ for M_W determination.

- ► Combination of fiducial rates → excellent QCD perturbative stability and accuracy, precision measurement.
- Based on large *p*^ℓ_t bins, large linear dependence on *M_W* → experimental statistics and systematics under control.
- Possibility to unfold data to particle level \rightarrow global experimental combination.
- Allows systematic inclusion and assessment of all sources of sensitivity to M_W: PDF, NP, EW, ...

Covariance studies to systematically classify and potentially include yet subdominant effects.

Taming PDF uncertainties with additional p_t^{ℓ} bins [Bagnaschi, Vicini, 1910.04726]

- ► Strong anti-correlation under PDF variations between p_t^{ℓ} regions below/above jacobian peak.
- Take PDF correlations into account directly in the definition of χ²:

$$\begin{split} \chi_{i}^{2} &= \sum_{r,s \,\in \,\mathrm{bins}} \left(\mathcal{T}^{i} - \mathcal{D}^{\mathrm{exp}} \right)_{r} \left(\mathcal{C}^{-1} \right)_{rs} \left(\mathcal{T}^{i} - \mathcal{D}^{\mathrm{exp}} \right)_{s} \\ \mathcal{C} &= \Sigma_{\mathrm{pdf}} + \Sigma_{\mathrm{stat}} + \Sigma_{\mathrm{mc}} + \Sigma_{\mathrm{exp}}^{\mathrm{syst}} \\ (\Sigma_{\mathrm{pdf}})_{rs} &= \langle \mathcal{T}_{r}^{i} \, \mathcal{T}_{s}^{i} \rangle_{\mathrm{pdf}} - \langle \mathcal{T}_{r}^{i} \rangle_{\mathrm{pdf}} \, \langle \mathcal{T}_{s}^{i} \rangle_{\mathrm{pdf}} \end{split}$$

Correlation leads to profiling of PDF replicas → significant reduction of PDF uncertainty w.r.t. the case with no PDF covariance, at the few-MeV level.

EW effects at the jacobian peak [Carloni, Chiesa, Martinez, Montagna, Nicrosini, Piccinini, Vicini, 1612.02841]

	$p\bar{p} \rightarrow W^+$, $\sqrt{s} = 1.96 \text{ TeV}$ Templates accuracy: NLO-QCD+QCD _{PS}			M_W shifts (MeV)			
				$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+\nu(\text{dres})$	
	Pseudodata accuracy	QED FSR	M_T	p_T^ℓ	M_T	p_T^ℓ	
1	NLO-QCD+(QCD+QED) _{PS}	Pythia	-91 ± 1	-308 ± 4	-37 ± 1	-116 ± 4	
2	NLO-QCD+(QCD+QED) _{PS}	Photos	-83 ± 1	-282 ± 4	-36 ± 1	-114±3	
3	${\rm NLO}_{\text{-}}({\rm QCD} + {\rm EW}) \text{-} \texttt{two-rad} + ({\rm QCD} + {\rm QED})_{\rm PS}$	Pythia	-86 ± 1	-291 ± 3	-38 ± 1	-115 ± 3	
4	NLO-(QCD+EW)-two-rad+(QCD+QED)PS	Photos	-85 ± 1	-290 ± 4	-37±2	-113 ± 3	

	$pp \rightarrow W^+$, $\sqrt{s} = 14 \text{ TeV}$	M_W shifts (MeV)			
	Templates accuracy: LO	$W^+ \rightarrow \mu^+ \nu$		$W^+ \rightarrow e^+ \nu$	
	Pseudo-data accuracy	M_T	p_T^ℓ	M_T	p_T^ℓ
1	Horace only FSR-LL at $O(\alpha)$	-94 ± 1	-104 ± 1	-204 ± 1	-230 ± 2
2	Horace FSR-LL	-89 ± 1	-97 ± 1	-179 ± 1	-195 ± 1
3	HORACE NLO-EW with QED shower	-90 ± 1	-94 ± 1	-177 ± 1	-190 ± 2
4	Horace FSR-LL + Pairs	-94 ± 1	-102 ± 1	-182 ± 2	-199 ± 1
5	Photos FSR-LL	-92 ± 1	-100 ± 2	-182 ± 1	-199 ± 2

- EW effects induce a smearing of the jacobian peak, shifting the extracted M_W.
- Leading effect from QED FSR, extra few-MeV shifts from subleading EW effects.
- Quantitatively, EW impact depends on the underlying QCD model: importance to include EW effects on top of an accurate QCD prediction.
- Progress in calculation of QCD-EW corrections at fixed order [Buonocore et al. 2102.12539; Bonciani et al., 2106.11953; Armadillo et al. 2201.01754; Buccioni et al. 2203.11237], and in resummation [Cieri et al. 1805.11948; Autieri et al. 2302.05403].