TECHNOLOGY INITIATIVE

CERN

EC(H)Os in the dark

Hannah Banks

Based on **arXiv:2302.07887** with Matthew McCullough & Dorota Grabowska

Hunting for Exotic Compact Objects (ECOs) with Gravitational Waves at Atom Interferometers

Motivation: A Quantum Revolution

Collider Programmes

NEW PHYSICS

e.g. Dark Matter

Quantum Sensing Technologies

High Energy Frontier

'Feebly' Interacting Frontier

Atom Interferometers

As a GW Detector:

FCHNOLOG

• **GW modifies L**, changing the phase difference recorded by the

two systems

Single Atom Inteferometer: Measures the **phase** difference between matter waves travelling along **two** different paths

Long Baseline Atom Interferometers

Several proposals to upsize Atom Interferometers to km scales to gain sensitivity to lower frequencies

In development...

mid 2030's..

Searches for Ultra-light DM

space based

2040's

Mid-band Gravitational Waves

The GW Detector Landscape

Resolved mergers of solar mass compact binaries

 10^{4}

Hz

 10^{2}

LIGO

Gravitational Waves @ Atom Interferometers ...

A New Lens

Gravitational Wave Background (GWB) = Total GW energy density emitted by a population of binaries, including **resolved & unresolved signals**

Characterise by:

$$\Omega_{GW}(f) = rac{f}{
ho_c} rac{\mathrm{d}
ho_c}{
ho_c}$$

This lens:

- Reveals an **important astrophysical signal** well with reach of Atom interferometers
 - Needs accounting for in other searches
 - Has a lot of information to reveal
- Offers a unique new way to probe the Dark Sector

$$rac{GW}{\mathrm{d}f}$$

Gravitational Wave Backgrounds

For a population of binary compact objects:

Energy Density spectrum for a single binary

 ${
m d} ilde{
ho}_{
m GW}(m_1,m_2)$

During inspiral: $\Omega_{GW} \propto f^{2/3}$ independent of system

Source: LIGO Stellar Mass Compact Binaries

LIGO has observed many **stellar-mass binaries** merging $@10^2 - 10^4 Hz$

- Hundreds of stellar mass Binary Black Holes (BBH)
- 2 confirmed Binary Neutron Star (BNS)
- 4 black hole-neutron star (BHNS)

 Extract Mass distribution • Extract present event rate

Stellar-mass populations are well characterised!

Emit **lower frequency** radiation during inspiral phase

Observable at Atom Interferometers?

Predicted astrophysical background from known populations of compact binaries well within reach !

Implications & Opportunities

Relevant **background** to searches for other sources (both resolved & stochastic) that needs to be taken into account.

2

Interesting Signal:

- Complimentary to individual mergers probes higher z
- Determine **population characteristics** and their **redshift dependence** e.g. masses, binary occurrence rate, BH angular momentum, NS ellipticity, NS magnetic fields
- **Test astrophysics** e.g. stellar formation rates, evolution of metallicity with redshift
- Probe possibility of Primordial Black Holes

Exotic Compact Objects (ECOs) ?

- SM is extraordinarily rich and diverse same true of Dark Sector?
- Possibility of new states over a great range of scales which could coalesce under gravity to form extended macroscopic objects

ECOs may include:

Fermion Stars

If form **binaries**, would produce **GWs**!

Sector? ch could **coalesce** under

GWs from ECOs...

Assume:

- Population of equal mass objects in binaries
- Same redshift distr. & merger rate as LIGO BH
- Either:
 - Inspiral only up to

$$f^{ECO}_{ISCO} = \frac{C^{3/2}}{3^{3/2}\pi GM} \ C = \frac{M}{R}$$

• BH waveforms for ringdown/merger

CERN QUANTUM TECHNOLOGY INITIATIVE

Higher masses = lower cut-off Mismatch between detectors = probe of dark sector complexity

Is this reasonable?

be fraction of Dark Matter in ECO binaries Let

$$\eta = \frac{\rho_{\rm ECO}}{\rho_{\rm DM}} \approx 6.4 \times 10^{-7} \times \left(\frac{R}{10}\right) \times \left(\frac{M}{2M_{\odot}}\right)$$

What fraction is required to **exceed** astrophysical background + **instrument sensitivity**?

> Sizeable signals even if ECOs harbour just a **tiny** fraction of Dark Sector energy

Summary

- **Background** from LIGO stellar mass binaries will be observable at atom interferometers - needs to be accounted for!
- Opportunity to extract lots of interesting astrophysical information

- ECOs harbouring just tiny fractions of DM abundance could produce significant signals
- **Mismatch** between extrapolated and observed signals at different detectors could be a **smoking gun** for a **new binary population**
- Spectrum cut-off sensitive to ECO mass probe of dark sector complexity

