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What is qibo?
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& arXiv:2009.01845: “Qibo: a framework for quantum simulation with hardware acceleration.”


https://arxiv.org/abs/2009.01845

Some features



More about gqibojit

© We do state vector simulation, which solves:
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wl(alz seey Gn) = Z G(T7 T/)w(a.lz cety T/7 L] U")7 (1)

© where the number of operations scales exponentially with Ngubits-

© For this reason we built gibojit (recommended if Ngypits>20):
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& arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”


https://arxiv.org/abs/2203.08826

gibojit benchmarks

qibojit, gft, double precision

—e— NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
---- NVIDIA RTX A6000 (cupy-multigpu)
—— AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)
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Figure 1: Quantum Fourier Transform execution with gibojit backend for growing
number of qubits.



More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;8) = [1 — s(7; )] Ho + s(7; 0) H1. (2)
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More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);

@® defining a scheduling function s(7; 0) and a timestep dt;

@® setting the solver to use for integrating Schrondiger’s equation.
@® calling the AdiabaticEvolution object at some final time T.

© This mechanism “pushes” the state during the evolution by sequentially executing
a circuit obtained by trotterizing H,q.

© If solver=="exp", we use the evolutionary operator!:

(7 = jdt)) = [T Uj lu(r = 0)) 3)
j

Translated into a circuit form using the Trotter decomposition.


https://docs.sympy.org/latest/index.html

Adiabatic evolution on gqibo backends

TFIM Adiabatic Evolution (6t =0.01, T'=

1, complex128)
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Figure 2: Adiabatic evolution execution with growing
solvers.
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A full-stack QML algorithm



The theoretical idea

Get a data sample

Encoding the CDF into
an adiabatic evolution

Density
estimation

Translate the adiabatic
hamiltonian into a circuit
composed of rotations

Derivate the circuit via
parameter shift rule




SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):
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SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;
2. we track the energy of a Pauli Z during the evolution;
3. we calculate a loss function Jyge:

Nsample

Jmse = Z [E(Tk) - F(Xk)}2;

k=1

4. we choose an optimizer to find 61,c5¢ Which minimizes Jmse.

& arXiv:2303.11346: “Determining probability density functions with adiabatic quantum
computing.”


https://arxiv.org/abs/2303.11346

A toy example with nqubits=1 - starting point

© nparams=20, dt=0.1, final time=50 , target_loss=None

Not trained evolution
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A toy example - until Jysp = 1071

© nparams=20, dt=0.1, final _time=50 , target_loss=le-1

Trained until =101
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A toy example - until Jysg = 1072

© nparams=20, dt=0.1, final time=50 , target_loss=1e-2

Trained until /=102
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A toy example - ending at Jysgp = 1074

© nparams=20, dt=0.1, final time=50 , target_loss=1e-4

Trained until /j=10"*
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SIMULATION: from {H,q} to a circuit and derivate!
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SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’' sequence into a single unitary:

2. translate this unitary in a sequence of rotational gates:
U(t) = R(61)Rx(02)R-(03) with 0; = 0;(t).

© Then, we derivate the expected values using parameter shift rule and chain rule.

PDF estimation - p(x) = [(x; 10,0.5) PDF estimation - p(x) = 0.6A"(x; — 10,4) + 0.4(x; 5,5)
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Hardware deployment



EXECUTION: running on the hardware

© qibo is hardware-agnostic!
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EXECUTION: running on the hardware

© qibo is hardware-agnostic!

© We defined an abstract Platform object, which can be selected via
set_backend("gibolab", platform="my_platform").

Qibo

Qibolab

Hardware circuit

© Some labs are already using gibo:

& arXiv:2202.07017: “An open-source modular framework for quantum computing.”
& arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum
Processors” 14


https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

gibolab is not enough!

© Each quantum control routine is useless if the sequences of pulses are not well
calibrated with the single qubit.
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calibrated with the single qubit.

© For this reason, gibocal was born: a module for quantum calibration and
verification.

Qibo framework

( High performance Qibocal
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( 9 Calibration routines
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@ Gate set
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Pulse abstraction qq-upload
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gibolab is not enough!

© Each quantum control routine is useless if the sequences of pulses are not well
calibrated with the single qubit.

© For this reason, gibocal was born: a module for quantum calibration and
verification.

Qibo framework

( High performance Qibocal
simulation

( 9 Calibration routines
QPU Gate set abstraction
@ Gate set
. characterization
HR | aibolad S )
qq-live

? Control drivers K Reporting tools j qu—campaze)
Pulse abstraction qq-upload

& arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization. 15
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The importance of gibocal

Gamma CDF fit
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Figure 3: Different qubits requires different calibration and leads to different results.
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© Open questions:

& what if the entire training is performed on a NISQ device? are the results
self-resistent to the noise?
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© Open questions:

& what if the entire training is performed on a NISQ device? are the results
self-resistent to the noise?
¥ what needed for improving results on the hardware?
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{: what if we train on hardware?



The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:
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Figure 4: Here £4 = O1x + 63 and £g = O3x + 0,4.

© and then use some E[O] as predictor:
Yored = (0ICT(x; 8)O C(x; 6)[0) . (4)

© Using the parameter-shift rule, we can perform a Stochastic Gradient Descent
(SGD) on the hardware.

& arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using
Qibo.”
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Simulation results
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Run on the hardware

QPU1Q predictions - Hardware PSR vs Simulated PSR

One set of gpulq predictions with éf,ps,
1.0 —— Mean of the measurements performed with 6y, s

—-— Simulated theoretical model with 67, s,

Final predictions of a PSR simulation started with 6o
— True law

Measured confidence belt with 67 ps-

0.0

-0.5

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 5: Batch Gradient Descent on the hardware, with gradients evaluated via
Parameter-Shift Rule. We take 100 points {x;} in the range [—1,1] and we make 100
predictions for each x;. Mean and standard deviation are used for determining the
estimations and the confidend belt.
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Run on the hardware

Normalised measures with respect to the true law

1.05
—— Mean of the measurements performed with &, cma
—— Mean of the measurements performed with & -
1.04 ~
Measured confidence belt with 6 cms
Measured confidence belt with 67 s
1.03 Simulated theoretical model with 8, crn,
3 Simulated theoretical model with 6 s
+ — True law: y =sin2x
§1 02 @ True images of the training sample
s
S101
T
>
1.00
0.99
098

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).
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ol the full-stack framework works! comparable with a genetic algorithm;
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Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

ol the full-stack framework works! comparable with a genetic algorithm;
i@ we can tackle only easy problems: it is slow;
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Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

ol the full-stack framework works! comparable with a genetic algorithm;
i@ we can tackle only easy problems: it is slow;
® no mitigation: have been the errors absorbed into the optimization?
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SIMULATION

© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).
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© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

© We apply error mitigation techniques® during a QML training!

o0 =3 01 06 ] o0 0z [ 06 o8 00 02 01 06 [

Figure 7: PDF fit performed with different levels of noisy simulation. From left to
right, exact simulation, noisy simulation, noisy simulation applying error mitigation to
the predictions.

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).
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Figure 7: PDF fit performed with different levels of noisy simulation. From left to
right, exact simulation, noisy simulation, noisy simulation applying error mitigation to
the predictions.

© Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).
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© code is open-source here: feel free to make your own contribution!
& Have a look to our documentation.
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