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What is qibo?

� arXiv:2009.01845: “Qibo: a framework for quantum simulation with hardware acceleration.”
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https://arxiv.org/abs/2009.01845


Some features



More about qibojit

) We do state vector simulation, which solves:

ψ′(σ1, ..., σn) =
∑
τ ′

G(τ, τ ′)ψ(σ1, ..., τ
′, ..., σn), (1)

) where the number of operations scales exponentially with Nqubits .

) For this reason we built qibojit (recommended if Nqubits≥20):

� arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”
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qibojit benchmarks

Figure 1: Quantum Fourier Transform execution with qibojit backend for growing

number of qubits.
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More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.
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Adiabatic evolution on qibo backends
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A full-stack QML algorithm



The theoretical idea

7



SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F )→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk )− F (xk )

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”
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A toy example with nqubits=1 - starting point

) nparams=20, dt=0.1, final time=50 , target loss=None
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A toy example - until JMSE = 10−1

) nparams=20, dt=0.1, final time=50 , target loss=1e-1
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A toy example - until JMSE = 10−2

) nparams=20, dt=0.1, final time=50 , target loss=1e-2
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A toy example - ending at JMSE = 10−4

) nparams=20, dt=0.1, final time=50 , target loss=1e-4
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SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.
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Hardware deployment



EXECUTION: running on the hardware

) qibo is hardware-agnostic!

) We defined an abstract Platform object, which can be selected via

set backend("qibolab", platform="my platform").

) Some labs are already using qibo:

� arXiv:2202.07017: “An open-source modular framework for quantum computing.”

� arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum

Processors”
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qibolab is not enough!

) Each quantum control routine is useless if the sequences of pulses are not well

calibrated with the single qubit.

) For this reason, qibocal was born: a module for quantum calibration and

verification.

� arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization.”
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The importance of qibocal

Figure 3: Different qubits requires different calibration and leads to different results.

) Open questions:

¯ what if the entire training is performed on a NISQ device? are the results

self-resistent to the noise?

° what needed for improving results on the hardware?
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¯: what if we train on hardware?



The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17
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Simulation results
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Run on the hardware
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Figure 5: Batch Gradient Descent on the hardware, with gradients evaluated via

Parameter-Shift Rule. We take 100 points {xj} in the range [−1, 1] and we make 100

predictions for each xj . Mean and standard deviation are used for determining the

estimations and the confidend belt.
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Run on the hardware
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Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20



Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20



Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20



Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20



°: how to get noise resistance?



SIMULATION

) We want to reproduce the u quark PDF fit of Pérez-Salinas et al .

) We apply error mitigation techniques2 during a QML training!
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Figure 7: PDF fit performed with different levels of noisy simulation. From left to

right, exact simulation, noisy simulation, noisy simulation applying error mitigation to

the predictions.

) Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).
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Conclusions



Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;
� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.
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