Towards a full-stack quantum operating system

Quantum simulation, control and calibration using qibo

Matteo Robbiati
10 May 2023

Working in the NISQ era

Quantum LAB

Custom devices
are needed

Analysis W/
Quantum computers

Physics data

—— Simulations]—-—\ .

\.

Qibo give to Qibo

About my research!

Developing of Qibo AT

QML algos for HEP @

N
/

Qibo returns

What is qibo?

Quantum Annealing

[Language Aﬂ—b{ Implementatiorﬂ

}implementation for
| quantum simulations:
|useful For hybrid models. |

v

tensorflow

[Lightweight, fits Al
| wellwith any CPU. J

we

| Efficient device-agnostic |
I simulation with custom |
1

|operators.

v

v

gibojit

Control drivers
“— Quantum hardware { Qibolab
Calibration

& arXiv:2009.01845: “Qibo: a framework for quantum simulation with hardware acceleration.”

https://arxiv.org/abs/2009.01845

Some features

More about gqibojit

© We do state vector simulation, which solves:

W' (01, ey n) = Z G(r, ™")Y(o1, ey Ty oy On), (1)

https://arxiv.org/abs/2203.08826

More about gqibojit

© We do state vector simulation, which solves:

wl(alz seey Gn) = Z G(T7 T/)w(a.lz cety T/7 L] U")7 (1)

© where the number of operations scales exponentially with Ngubits-

https://arxiv.org/abs/2203.08826

More about gqibojit

© We do state vector simulation, which solves:

wl(alz seey Gn) = Z G(T7 T/)w(a.lz cety T/7 L] U")7 (1)

© where the number of operations scales exponentially with Ngubits-

© For this reason we built gibojit (recommended if Ngypits>20):

e
I In-place updates.

Custom operatlons L

using Numba -)
| Specialized operators for |
| 1and 2 qubits gates f

L - s

Z

Custom operations using =
NVIDIA cuQuantum ‘)

Simulation

& arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”

https://arxiv.org/abs/2203.08826

gibojit benchmarks

qibojit, gft, double precision

—e— NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
---- NVIDIA RTX A6000 (cupy-multigpu)
—— AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

—_
o
=

—_
(=)
o

10?

10*

Total simulation time (sec)

100 e R R IR VRV IV =AY

5 10 15 20 25 30 35
Number of qubits

Figure 1: Quantum Fourier Transform execution with gibojit backend for growing
number of qubits.

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;8) = [1 — s(7;)] Ho + s(7; 0) H1. (2)

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;8) = [1 — s(7;)] Ho + s(7; 0) H1. (2)

© which can be used by:

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:
Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);
@® defining a scheduling function s(7; 0) and a timestep dt;

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);
@® defining a scheduling function s(7; 0) and a timestep dt;
@® setting the solver to use for integrating Schrondiger’s equation.

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);

@® defining a scheduling function s(7; 0) and a timestep dt;

@® setting the solver to use for integrating Schrondiger’s equation.
@® calling the AdiabaticEvolution object at some final time T.

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);

@® defining a scheduling function s(7; 0) and a timestep dt;

@® setting the solver to use for integrating Schrondiger’s equation.
@® calling the AdiabaticEvolution object at some final time T.

© This mechanism “pushes” the state during the evolution by sequentially executing
a circuit obtained by trotterizing H,q.

https://docs.sympy.org/latest/index.html

More about quantum annealing with gqibo

© An AdiabaticEvolution model is provided, which implements:

Haa(7;6) = [1 — s(7; 0)] Ho + s(7; 0) Hi. (2)
© which can be used by:

@ defining Hy and H; symbolically (we use sympy);

@® defining a scheduling function s(7; 0) and a timestep dt;

@® setting the solver to use for integrating Schrondiger’s equation.
@® calling the AdiabaticEvolution object at some final time T.

© This mechanism “pushes” the state during the evolution by sequentially executing
a circuit obtained by trotterizing H,q.

© If solver=="exp", we use the evolutionary operator!:

(7 = jdt)) = [T Uj lu(r = 0)) 3)
j

Translated into a circuit form using the Trotter decomposition.

https://docs.sympy.org/latest/index.html

Adiabatic evolution on gqibo backends

TFIM Adiabatic Evolution (6t =0.01, T'=

1, complex128)

10*

100

-m-m-m-N-E-E

/e
o -o-0-0-0-0"¢

Trotter (GPU)
Trotter (multi-GPU)
Trotter (CPU)

Exp (GPU)

Exp (CPU)

RKd (GPU)

RKd (CPU)

Trotter RK4 (GPU)
Trotter RK4 (CPU)

20
Number of Qubits

15

Figure 2: Adiabatic evolution execution with growing
solvers.

25 30

number of qubits and different

A full-stack QML algorithm

The theoretical idea

Get a data sample

Encoding the CDF into
an adiabatic evolution

Density
estimation

Translate the adiabatic
hamiltonian into a circuit
composed of rotations

Derivate the circuit via
parameter shift rule

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;
2. we track the energy of a Pauli Z during the evolution;

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;
2. we track the energy of a Pauli Z during the evolution;
3. we calculate a loss function Jyge:

Nsample

Jmse = Z [E(Tk) - F(Xk)}2;

k=1

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;
2. we track the energy of a Pauli Z during the evolution;
3. we calculate a loss function Jyge:

N,

sample

Jmse = Z [E(Tk) - F(Xk)}2;

k=1

4. we choose an optimizer to find 61,c5¢ Which minimizes Jmse.

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

© Given a sample {x} and calculated its CDF values F(x):

S we select two hamiltonians Hy and H; such that a target observable has energy
E =0 and E = 1 respectively on Hy and H; ground states;
%% we map (x, F) — (7, E).

© The AE training strategy follows:

1. we run the evolution with random initial 8y into the scheduling;
2. we track the energy of a Pauli Z during the evolution;
3. we calculate a loss function Jyge:

Nsample

Jmse = Z [E(Tk) - F(Xk)}2;

k=1

4. we choose an optimizer to find 61,c5¢ Which minimizes Jmse.

& arXiv:2303.11346: “Determining probability density functions with adiabatic quantum
computing.”

https://arxiv.org/abs/2303.11346

A toy example with nqubits=1 - starting point

© nparams=20, dt=0.1, final time=50 , target_loss=None

Not trained evolution

1.0 4 — eCDF o © »
—— Adiabatic Evolution
© Training points
0.8 1
0.6
“
el
5}
0.4
0.2
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

A toy example - until Jysp = 1071

© nparams=20, dt=0.1, final _time=50 , target_loss=le-1

Trained until =101

1.0 4 — eCDF o o ©
—— Adiabatic Evolution
© Training points
0.8 1
0.6
“
el
5}
0.4
0.2
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

10

A toy example - until Jysg = 1072

© nparams=20, dt=0.1, final time=50 , target_loss=1e-2

Trained until /=102

1.0+ — eCDF ——
—— Adiabatic Evolution 4
© Training points
0.8 1
0.6
“
°
5}
0.4
0.24
0.0
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

11

A toy example - ending at Jysgp = 1074

© nparams=20, dt=0.1, final time=50 , target_loss=1e-4

Trained until /j=10"*

1.0+ — eCDF >= & 9
-~ Adiabatic Evolution ”
© Training points
0.8 1
0.6
“
el
5}
0.4
0.2
0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

12

SIMULATION: from {H,q} to a circuit and derivate!

13

SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

13

SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’' sequence into a single unitary:

n

TTe ™9 - ue);

Jj=1

13

SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’' sequence into a single unitary:

n

TTe ™9 - ue);

j=1
2. translate this unitary in a sequence of rotational gates:

U(t) = R(01)Re(02)R-(03) with 0; = 0;(t).

13

SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’' sequence into a single unitary:

n

TTe ™9 — u(e);
j=1
2. translate this unitary in a sequence of rotational gates:
U(t) = R(61)Rx(02)R-(03) with 0; = 0;(t).

© Then, we derivate the expected values using parameter shift rule and chain rule.

13

SIMULATION: from {H,q} to a circuit and derivate!

© Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’' sequence into a single unitary:

2. translate this unitary in a sequence of rotational gates:
U(t) = R(61)Rx(02)R-(03) with 0; = 0;(t).

© Then, we derivate the expected values using parameter shift rule and chain rule.

PDF estimation - p(x) = [(x; 10,0.5) PDF estimation - p(x) = 0.6A"(x; — 10,4) + 0.4(x; 5,5)

Target values Target values

— Taget rue low. —- Torget true aw

simu

. b'\—_‘ = FID gm e

|
[T

13

Hardware deployment

EXECUTION: running on the hardware

© qibo is hardware-agnostic!

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

© qibo is hardware-agnostic!

© We defined an abstract Platform object, which can be selected via
set_backend("gibolab", platform="my_platform").

Qibo

Qibolab

Hardware circuit

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

© qibo is hardware-agnostic!

© We defined an abstract Platform object, which can be selected via
set_backend("gibolab", platform="my_platform").

Qibo

Qibolab

Hardware circuit

© Some labs are already using gibo:

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

© qibo is hardware-agnostic!

© We defined an abstract Platform object, which can be selected via
set_backend("gibolab", platform="my_platform").

Qibo

Qibolab

Hardware circuit

© Some labs are already using gibo:

& arXiv:2202.07017: “An open-source modular framework for quantum computing.”
& arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum
Processors” 14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

gibolab is not enough!

© Each quantum control routine is useless if the sequences of pulses are not well
calibrated with the single qubit.

15

https://arxiv.org/abs/2303.10397

gibolab is not enough!

© Each quantum control routine is useless if the sequences of pulses are not well
calibrated with the single qubit.

© For this reason, gibocal was born: a module for quantum calibration and
verification.

Qibo framework

(High performance Qibocal
simulation

(9 Calibration routines
QPU Gate set abstraction
@ Gate set
. characterization
HR | aibolad S)
qq-live

? Control drivers K Reporting tools j qu—campaze)
Pulse abstraction qq-upload

15

https://arxiv.org/abs/2303.10397

gibolab is not enough!

© Each quantum control routine is useless if the sequences of pulses are not well
calibrated with the single qubit.

© For this reason, gibocal was born: a module for quantum calibration and
verification.

Qibo framework

(High performance Qibocal
simulation

(9 Calibration routines
QPU Gate set abstraction
@ Gate set
. characterization
HR | aibolad S)
qq-live

? Control drivers K Reporting tools j qu—campaze)
Pulse abstraction qq-upload

& arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization. 15

https://arxiv.org/abs/2303.10397

The importance of gibocal

Gamma CDF fit

10 { —=— Target
® 5qqubit0 0%0000p000000000,0000000
oo
1 e 5qqubitl
0.8 . PR . .
® Uncalibrated . .oo..'- o o, ‘e ..‘ “.. s
° °
°
0.6 1 "'
0.4 4
g °
S - 0 e | o° .‘ .
1 .
02 .e® e ® . eee
° ®_o ee
[°e
0.0 . - 'l
°
°
.
—0.2 4 o®
s ®
.
_gal te et e
T . 1 | I |
0 10 20 30 20 20
Time step

Figure 3: Different qubits requires different calibration and leads to different results.

16

The importance of gibocal

Gamma CDF fit

10 { —=— Target
® 5qqubit0 0%0000p000000000,0000000
oo
1 e 5qqubitl
0.8 . PR . .
® Uncalibrated . .oo..'- o o, ‘e ..‘ “.. s
° °
°
0.6 1 "'
0.4 4
g °
S - 0 e | o° .‘ .
1 .
02 .e® e ® . eee
° ®_o ee
[°e
0.0 . - 'l
°
°
.
—0.2 4 o®
s ®
.
_gal te et e
T . 1 | I |
0 10 20 30 20 20
Time step

Figure 3: Different qubits requires different calibration and leads to different results.

© Open questions:

16

The importance of gibocal

Gamma CDF fit

10 { —=— Target
® 5qqubit0 0000060000000 0,00600000
oo
1 e 5qqubitl
o8 7 AR Y] v
® Uncalibrated . .oo..'- o o, ‘e .c‘c‘... s
° °
0.6 1
0.4 4
w e
S . . e | o° oCe
1 oo .o
* o7 e® oy ‘
o,
0.0
-0.2 q .
s ®
.
_gal te et e
T . 1 | | |
0 10 20 30 20 20
Time step

Figure 3: Different qubits requires different calibration and leads to different results.

© Open questions:

& what if the entire training is performed on a NISQ device? are the results
self-resistent to the noise?

16

The importance of gibocal

Gamma CDF fit

1.0 1 —e— Target

® 5qqubit0 0%0000p000000000,0000000

oo
1 e 5qqubitl

o8 © AR Y] .

® Uncalibrated o, .co..'-.- o ® .0.-.... s

°
0.6 1 ..o
0.4 4
5 °
S - 0 e | o° .‘ .
0.2 LI . cos
. o o °e
[°e
0.0 . - 'l
.
°

.

—0.2 4 o®
s ®
.

_gal te et e

T . 1 | I |

0 10 20 30 20 20

Time step

Figure 3: Different qubits requires different calibration and leads to different results.

© Open questions:

& what if the entire training is performed on a NISQ device? are the results
self-resistent to the noise?
¥ what needed for improving results on the hardware?

16

{: what if we train on hardware?

The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:

0)RR Ep)— - TR RERN (A

Figure 4: Here £4 = O1x + 63 and £g = O3x + 0,4.

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:

0)RR Ep)— - TR RERN (A

Figure 4: Here £4 = O1x + 63 and £g = O3x + 0,4.

© and then use some E[O] as predictor:
Yored = (0ICT(x; 8)O C(x; 6)[0) . (4)

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:

0)RR Ep)— - TR RERN (A

Figure 4: Here £4 = O1x + 63 and £g = O3x + 0,4.

© and then use some E[O] as predictor:
Yored = (0ICT(x; 8)O C(x; 6)[0) . (4)

© Using the parameter-shift rule, we can perform a Stochastic Gradient Descent
(SGD) on the hardware.

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

© Following Pérez-Salinas et al. procedure, we can build a universal quantum
regressor for approximating y = f(x). The model can be:

0)RR Ep)— - TR RERN (A

Figure 4: Here £4 = O1x + 63 and £g = O3x + 0,4.

© and then use some E[O] as predictor:
Yored = (0ICT(x; 8)O C(x; 6)[0) . (4)

© Using the parameter-shift rule, we can perform a Stochastic Gradient Descent
(SGD) on the hardware.

& arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using
Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

Simulation results

0.5

0.0

-0.5

y =sin2x y=cosdx
1.0
05
0.0
true labels -0.5 true labels
initial predictions initial predictions
—— final predictions 10 S —-— final predictions
100 -075 -050 —-025 000 025 050 075 1.00 -1.00 -0.75 -0.50 -0.25 000 025 050 075 1.00
y =sin2x + 2cos?2x y = 2x +sin6x
10 true labels
initial predictions
0.5 = final predictions
0.0
20
true labels -0.5
initial predictions
—— final predictions
-1.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 ~1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00

18

Run on the hardware

QPU1Q predictions - Hardware PSR vs Simulated PSR

One set of gpulq predictions with éf,ps,
1.0 —— Mean of the measurements performed with 6y, s

—-— Simulated theoretical model with 67, s,

Final predictions of a PSR simulation started with 6o
— True law

Measured confidence belt with 67 ps-

0.0

-0.5

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 5: Batch Gradient Descent on the hardware, with gradients evaluated via
Parameter-Shift Rule. We take 100 points {x;} in the range [—1,1] and we make 100
predictions for each x;. Mean and standard deviation are used for determining the
estimations and the confidend belt.

19

Run on the hardware

Normalised measures with respect to the true law

1.05
—— Mean of the measurements performed with &, cma
—— Mean of the measurements performed with & -
1.04 ~
Measured confidence belt with 6 cms
Measured confidence belt with 67 s
1.03 Simulated theoretical model with 8, crn,
3 Simulated theoretical model with 6 s
+ — True law: y =sin2x
§1 02 @ True images of the training sample
s
S101
T
>
1.00
0.99
098

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

20

Run on the hardware

Normalised measures with respect to the true law

1.05
—— Mean of the measurements performed with &, cma
—— Mean of the measurements performed with & -
1.04 ~
Measured confidence belt with 6 cms
Measured confidence belt with 67 s
1.03 Simulated theoretical model with 8, crn,
3 Simulated theoretical model with 6 s
+ — True law: y =sin2x
§1 02 @ True images of the training sample
s
S101
T
>
1.00

0.99 W

0.98
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

ol the full-stack framework works! comparable with a genetic algorithm;

20

Run on the hardware

Normalised measures with respect to the true law

1.05
—— Mean of the measurements performed with &, cma
—— Mean of the measurements performed with & -
1.04 ~
Measured confidence belt with 6 cms
Measured confidence belt with 67 s
1.03 Simulated theoretical model with 8, crn,
3 Simulated theoretical model with 6 s
+ — True law: y =sin2x
§1 02 @ True images of the training sample
s
S101
T
>
1.00

0.99 W

0.98
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

ol the full-stack framework works! comparable with a genetic algorithm;
i@ we can tackle only easy problems: it is slow;

20

Run on the hardware

Normalised measures with respect to the true law

1.05
—— Mean of the measurements performed with &, cma
—— Mean of the measurements performed with & -
1.04 ~
Measured confidence belt with 6 cms
Measured confidence belt with 67 s
1.03 Simulated theoretical model with 8, crn,
3 Simulated theoretical model with 6 s
+ — True law: y =sin2x
§1 02 @ True images of the training sample
s
S101
T
>
1.00

0.99 W

0.98
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

Figure 6: Normalised results of the SGD (green line) compared with true law and a
genetic optimizer (red line).

ol the full-stack framework works! comparable with a genetic algorithm;
i@ we can tackle only easy problems: it is slow;
® no mitigation: have been the errors absorbed into the optimization?

20

%: how to get noise resistance?

SIMULATION

© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

© We apply error mitigation techniques® during a QML training!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

© We apply error mitigation techniques® during a QML training!

o0 =3 01 06] o0 0z [06 o8 00 02 01 06 [

Figure 7: PDF fit performed with different levels of noisy simulation. From left to
right, exact simulation, noisy simulation, noisy simulation applying error mitigation to
the predictions.

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

© We want to reproduce the u quark PDF fit of Pérez-Salinas et al.

© We apply error mitigation techniques® during a QML training!

o0 =3 01 06] o0 0z [06 o8 00 02 01 06 [

Figure 7: PDF fit performed with different levels of noisy simulation. From left to
right, exact simulation, noisy simulation, noisy simulation applying error mitigation to
the predictions.

© Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

Conclusions

Conclusions

© | am excited to be part of the gibo team and to share it with you:

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

© | am excited to be part of the gibo team and to share it with you:

] it's a perfect environment to tackle QML problems at 360°;

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

© | am excited to be part of the gibo team and to share it with you:

] it's a perfect environment to tackle QML problems at 360°;
%8¢ is based on a research-centred network, that we would like to grow more and
more.

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

© | am excited to be part of the gibo team and to share it with you:

] it's a perfect environment to tackle QML problems at 360°;

'&" is based on a research-centred network, that we would like to grow more and
more.

Quantum LAB

{?} A Errors
Adwes) | (W (e cnea)
Analysis W/
Q

| eumensees) -EEER) Y
:

\{ Annealers

B

Custom devices.
are needed

Physics data

—| simulations |-

give to Qibo

About my research!

Developing of Gibo AT
P T ©

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

© | am excited to be part of the gibo team and to share it with you:

£ it's a perfect environment to tackle QML problems at 360°;
38" is based on a research-centred network, that we would like to grow more and
more.

0
3

Acircuits -
h m \—{Hafdwarc(ontml ‘Custemdevi(es
Gy \ (Gt are needed
Quantum computers. Calibration | ' |_2reneeded |
0
//‘

{ Quantum computers]
| Annealers

Physics data

give to Qibo
About my research!
Developing of Gibo AT
P T ©
N o

© code is open-source here: feel free to make your own contribution!
& Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

	Some features
	A full-stack QML algorithm
	Hardware deployment
	175: what if we train on hardware?
	176: how to get noise resistance?
	Conclusions

