
Towards a full-stack quantum operating system

Quantum simulation, control and calibration using qibo

Matteo Robbiati

10 May 2023

Working in the NISQ era

1

What is qibo?

� arXiv:2009.01845: “Qibo: a framework for quantum simulation with hardware acceleration.”

2

https://arxiv.org/abs/2009.01845

Some features

More about qibojit

) We do state vector simulation, which solves:

ψ′(σ1, ..., σn) =
∑
τ ′

G(τ, τ ′)ψ(σ1, ..., τ
′, ..., σn), (1)

) where the number of operations scales exponentially with Nqubits .

) For this reason we built qibojit (recommended if Nqubits≥20):

� arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”

3

https://arxiv.org/abs/2203.08826

More about qibojit

) We do state vector simulation, which solves:

ψ′(σ1, ..., σn) =
∑
τ ′

G(τ, τ ′)ψ(σ1, ..., τ
′, ..., σn), (1)

) where the number of operations scales exponentially with Nqubits .

) For this reason we built qibojit (recommended if Nqubits≥20):

� arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”

3

https://arxiv.org/abs/2203.08826

More about qibojit

) We do state vector simulation, which solves:

ψ′(σ1, ..., σn) =
∑
τ ′

G(τ, τ ′)ψ(σ1, ..., τ
′, ..., σn), (1)

) where the number of operations scales exponentially with Nqubits .

) For this reason we built qibojit (recommended if Nqubits≥20):

� arXiv:2203.08826: “Quantum simulation with just-in-time compilation.”

3

https://arxiv.org/abs/2203.08826

qibojit benchmarks

Figure 1: Quantum Fourier Transform execution with qibojit backend for growing

number of qubits.

4

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

More about quantum annealing with qibo

) An AdiabaticEvolution model is provided, which implements:

Had(τ ;θ) =
[
1− s(τ ;θ)

]
H0 + s(τ ;θ)H1. (2)

) which can be used by:

� defining H0 and H1 symbolically (we use sympy);

� defining a scheduling function s(τ ;θ) and a timestep dt;

� setting the solver to use for integrating Schrondiger’s equation.

� calling the AdiabaticEvolution object at some final time T .

) This mechanism “pushes” the state during the evolution by sequentially executing

a circuit obtained by trotterizing Had.

) If solver=="exp", we use the evolutionary operator1:

|ψ(τ = jdt)〉 =
←∏
j

Uj |ψ(τ = 0)〉 (3)

1Translated into a circuit form using the Trotter decomposition.

5

https://docs.sympy.org/latest/index.html

Adiabatic evolution on qibo backends

5 10 15 20 25 30
Number of Qubits

10-1

100

101

102

103

104
To

tal
 ti

m
e (

se
c)

TFIM Adiabatic Evolution (δt= 0.01, T= 1, complex128)

Trotter (GPU)
Trotter (multi-GPU)
Trotter (CPU)
Exp (GPU)
Exp (CPU)
RK4 (GPU)
RK4 (CPU)
Trotter RK4 (GPU)
Trotter RK4 (CPU)

10 20 30
Number of Qubits

100

101

102

103

Ra
tio

 to
 T

ro
tte

r (
GP

U)

10 20 30
Number of Qubits

101

103

Ra
tio

 to
 T

ro
tte

r (
CP

U)Figure 2: Adiabatic evolution execution with growing number of qubits and different

solvers.

6

A full-stack QML algorithm

The theoretical idea

7

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

SIMULATION: fit CDF with Adiabatic Evolution (AE)

) Given a sample {x} and calculated its CDF values F (x):

® we select two hamiltonians H0 and H1 such that a target observable has energy

E = 0 and E = 1 respectively on H0 and H1 ground states;

® we map (x ,F)→ (τ,E).

) The AE training strategy follows:

1. we run the evolution with random initial θ0 into the scheduling;

2. we track the energy of a Pauli Z during the evolution;

3. we calculate a loss function Jmse:

Jmse =

Nsample∑
k=1

[
E(τk)− F (xk)

]2
;

4. we choose an optimizer to find θbest which minimizes Jmse.

� arXiv:2303.11346: “Determining probability density functions with adiabatic quantum

computing.”

8

https://arxiv.org/abs/2303.11346

A toy example with nqubits=1 - starting point

) nparams=20, dt=0.1, final time=50 , target loss=None

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Not trained evolution
eCDF
Adiabatic Evolution
Training points

9

A toy example - until JMSE = 10−1

) nparams=20, dt=0.1, final time=50 , target loss=1e-1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Trained until J = 10 1

eCDF
Adiabatic Evolution
Training points

10

A toy example - until JMSE = 10−2

) nparams=20, dt=0.1, final time=50 , target loss=1e-2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Trained until J = 10 2

eCDF
Adiabatic Evolution
Training points

11

A toy example - ending at JMSE = 10−4

) nparams=20, dt=0.1, final time=50 , target loss=1e-4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Trained until J = 10 4

eCDF
Adiabatic Evolution
Training points

12

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

SIMULATION: from {Had} to a circuit and derivate!

) Firstly, we did some calculations and approximations in order to:

1. translate the Hamiltonians’ sequence into a single unitary:
n∏

j=1

e−iHjdt → U(t);

2. translate this unitary in a sequence of rotational gates:

U(t) = Rz (θ1)Rx (θ2)Rz (θ3) with θi ≡ θi (t).

) Then, we derivate the expected values using parameter shift rule and chain rule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = (x; 10, 0.5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Target values

Data
Target true law

0.0 0.2 0.4 0.6 0.8 1.0
0.75

1.00

1.25

Ra
tio

 to
 tr

ue

Simulations
Exact simulation
Real Nshots = 2 104

Real Nshots = 2 105

PDF estimation - (x) = 0.6 (x; 10, 4) + 0.4 (x; 5, 5)

13

Hardware deployment

EXECUTION: running on the hardware

) qibo is hardware-agnostic!

) We defined an abstract Platform object, which can be selected via

set backend("qibolab", platform="my platform").

) Some labs are already using qibo:

� arXiv:2202.07017: “An open-source modular framework for quantum computing.”

� arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum

Processors”

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

) qibo is hardware-agnostic!

) We defined an abstract Platform object, which can be selected via

set backend("qibolab", platform="my platform").

) Some labs are already using qibo:

� arXiv:2202.07017: “An open-source modular framework for quantum computing.”

� arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum

Processors”

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

) qibo is hardware-agnostic!

) We defined an abstract Platform object, which can be selected via

set backend("qibolab", platform="my platform").

) Some labs are already using qibo:

� arXiv:2202.07017: “An open-source modular framework for quantum computing.”

� arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum

Processors”

14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

EXECUTION: running on the hardware

) qibo is hardware-agnostic!

) We defined an abstract Platform object, which can be selected via

set backend("qibolab", platform="my platform").

) Some labs are already using qibo:

� arXiv:2202.07017: “An open-source modular framework for quantum computing.”

� arXiv:2112.02933: “ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum

Processors” 14

https://arxiv.org/abs/2202.07017
https://arxiv.org/abs/2112.02933

qibolab is not enough!

) Each quantum control routine is useless if the sequences of pulses are not well

calibrated with the single qubit.

) For this reason, qibocal was born: a module for quantum calibration and

verification.

� arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization.”

15

https://arxiv.org/abs/2303.10397

qibolab is not enough!

) Each quantum control routine is useless if the sequences of pulses are not well

calibrated with the single qubit.

) For this reason, qibocal was born: a module for quantum calibration and

verification.

� arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization.”

15

https://arxiv.org/abs/2303.10397

qibolab is not enough!

) Each quantum control routine is useless if the sequences of pulses are not well

calibrated with the single qubit.

) For this reason, qibocal was born: a module for quantum calibration and

verification.

� arXiv:2303.10397: “Towards an open-source framework to perform quantum calibration and

characterization.”
15

https://arxiv.org/abs/2303.10397

The importance of qibocal

Figure 3: Different qubits requires different calibration and leads to different results.

) Open questions:

¯ what if the entire training is performed on a NISQ device? are the results

self-resistent to the noise?

° what needed for improving results on the hardware?

16

The importance of qibocal

Figure 3: Different qubits requires different calibration and leads to different results.

) Open questions:

¯ what if the entire training is performed on a NISQ device? are the results

self-resistent to the noise?

° what needed for improving results on the hardware?

16

The importance of qibocal

Figure 3: Different qubits requires different calibration and leads to different results.

) Open questions:

¯ what if the entire training is performed on a NISQ device? are the results

self-resistent to the noise?

° what needed for improving results on the hardware?

16

The importance of qibocal

Figure 3: Different qubits requires different calibration and leads to different results.

) Open questions:

¯ what if the entire training is performed on a NISQ device? are the results

self-resistent to the noise?

° what needed for improving results on the hardware?

16

¯: what if we train on hardware?

The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

The theoretical idea

) Following Pérez-Salinas et al. procedure, we can build a universal quantum

regressor for approximating y = f (x). The model can be:

Figure 4: Here ξA = θ1x + θ2 and ξB = θ3x + θ4.

) and then use some E [Ô] as predictor:

ypred = 〈0|C†(x ;θ)Ô C(x ;θ)|0〉 . (4)

) Using the parameter-shift rule, we can perform a Stochastic Gradient Descent

(SGD) on the hardware.

� arXiv:2210.10787: “A quantum analytical Adam descent through parameter shift rule using

Qibo.”

17

https://arxiv.org/abs/1907.02085
https://arxiv.org/abs/2210.10787

Simulation results

18

Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

y
QPU1Q predictions - Hardware PSR vs Simulated PSR

One set of qpu1q predictions with f, psr

Mean of the measurements performed with f, psr

Simulated theoretical model with f, psr

Final predictions of a PSR simulation started with 0
True law
Measured confidence belt with f, psr

Figure 5: Batch Gradient Descent on the hardware, with gradients evaluated via

Parameter-Shift Rule. We take 100 points {xj} in the range [−1, 1] and we make 100

predictions for each xj . Mean and standard deviation are used for determining the

estimations and the confidend belt.

19

Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20

Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20

Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20

Run on the hardware

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
(y

+
10

)/
(y

tr
ue

+
10

)
Normalised measures with respect to the true law

Mean of the measurements performed with f, cma

Mean of the measurements performed with f, psr

Measured confidence belt with f, cma

Measured confidence belt with f, psr

Simulated theoretical model with f, cma

Simulated theoretical model with f, psr

True law: y = sin 2x
True images of the training sample

Figure 6: Normalised results of the SGD (green line) compared with true law and a

genetic optimizer (red line).

� the full-stack framework works! comparable with a genetic algorithm;

� we can tackle only easy problems: it is slow;

À no mitigation: have been the errors absorbed into the optimization?

20

°: how to get noise resistance?

SIMULATION

) We want to reproduce the u quark PDF fit of Pérez-Salinas et al .

) We apply error mitigation techniques2 during a QML training!

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

Figure 7: PDF fit performed with different levels of noisy simulation. From left to

right, exact simulation, noisy simulation, noisy simulation applying error mitigation to

the predictions.

) Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

) We want to reproduce the u quark PDF fit of Pérez-Salinas et al .

) We apply error mitigation techniques2 during a QML training!

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

Figure 7: PDF fit performed with different levels of noisy simulation. From left to

right, exact simulation, noisy simulation, noisy simulation applying error mitigation to

the predictions.

) Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

) We want to reproduce the u quark PDF fit of Pérez-Salinas et al .

) We apply error mitigation techniques2 during a QML training!

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

Figure 7: PDF fit performed with different levels of noisy simulation. From left to

right, exact simulation, noisy simulation, noisy simulation applying error mitigation to

the predictions.

) Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

SIMULATION

) We want to reproduce the u quark PDF fit of Pérez-Salinas et al .

) We apply error mitigation techniques2 during a QML training!

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

0.0 0.2 0.4 0.6 0.8

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Statistics on results

Mean values

Target function

Confidence belt

Figure 7: PDF fit performed with different levels of noisy simulation. From left to

right, exact simulation, noisy simulation, noisy simulation applying error mitigation to

the predictions.

) Run on the hardware upcoming!

2We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

21

https://arxiv.org/abs/2011.13934

Conclusions

Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;
� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;

� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;
� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;
� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

Conclusions

) I am excited to be part of the qibo team and to share it with you:

3 it’s a perfect environment to tackle QML problems at 360°;
� is based on a research-centred network, that we would like to grow more and

more.

� code is open-source here: feel free to make your own contribution!

� Have a look to our documentation.

22

https://github.com/qiboteam/qibo
https://qibo.science/

	Some features
	A full-stack QML algorithm
	Hardware deployment
	175: what if we train on hardware?
	176: how to get noise resistance?
	Conclusions

