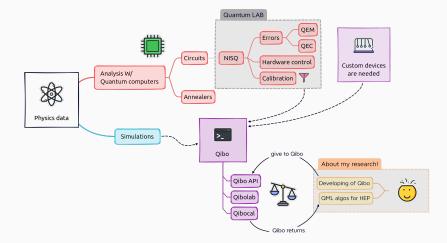
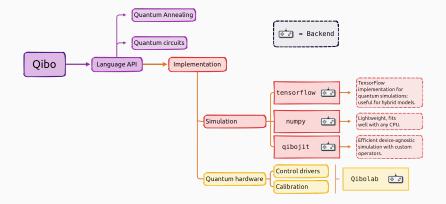
Towards a full-stack quantum operating system

Quantum simulation, control and calibration using qibo

Matteo Robbiati 10 May 2023

Working in the NISQ era





arXiv:2009.01845: "Qibo: a framework for quantum simulation with hardware acceleration."

Some features

• We do state vector simulation, which solves:

$$\psi'(\sigma_1, ..., \sigma_n) = \sum_{\tau'} G(\tau, \tau') \psi(\sigma_1, ..., \tau', ..., \sigma_n),$$
(1)

• We do state vector simulation, which solves:

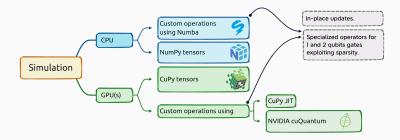
$$\psi'(\sigma_1, ..., \sigma_n) = \sum_{\tau'} G(\tau, \tau') \psi(\sigma_1, ..., \tau', ..., \sigma_n),$$
(1)

 \odot where the number of operations scales exponentially with N_{qubits} .

• We do state vector simulation, which solves:

$$\psi'(\sigma_1, ..., \sigma_n) = \sum_{\tau'} G(\tau, \tau') \psi(\sigma_1, ..., \tau', ..., \sigma_n),$$
(1)

- where the number of operations scales exponentially with N_{qubits} .
- For this reason we built qibojit (recommended if $N_{qubits>20}$):



arXiv:2203.08826: "Quantum simulation with just-in-time compilation."

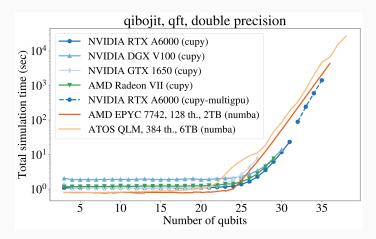


Figure 1: Quantum Fourier Transform execution with qibojit backend for growing number of qubits.

$$H_{\rm ad}(\tau;\boldsymbol{\theta}) = \left[1 - \boldsymbol{s}(\tau;\boldsymbol{\theta})\right] H_0 + \boldsymbol{s}(\tau;\boldsymbol{\theta}) H_1.$$
⁽²⁾

$$H_{\rm ad}(\tau;\boldsymbol{\theta}) = \left[1 - s(\tau;\boldsymbol{\theta})\right] H_0 + s(\tau;\boldsymbol{\theta}) H_1.$$
⁽²⁾

• which can be used by:

$$H_{\rm ad}(\tau;\boldsymbol{\theta}) = \left[1 - s(\tau;\boldsymbol{\theta})\right] H_0 + s(\tau;\boldsymbol{\theta}) H_1.$$
(2)

• which can be used by:

 \square defining H_0 and H_1 symbolically (we use sympy);

$$H_{\rm ad}(\tau;\boldsymbol{\theta}) = \left[1 - s(\tau;\boldsymbol{\theta})\right] H_0 + s(\tau;\boldsymbol{\theta}) H_1.$$
⁽²⁾

• which can be used by:

• defining H_0 and H_1 symbolically (we use sympy);

 ${f I}$ defining a scheduling function $s(\tau; \theta)$ and a timestep dt;

$$H_{\rm ad}(\tau;\theta) = \left[1 - s(\tau;\theta)\right] H_0 + s(\tau;\theta) H_1.$$
⁽²⁾

• which can be used by:

 \square defining H_0 and H_1 symbolically (we use sympy);

- \mathfrak{S} defining a scheduling function $s(\tau; \theta)$ and a timestep dt;
- setting the solver to use for integrating Schrondiger's equation.

$$H_{\rm ad}(\tau;\theta) = \left[1 - s(\tau;\theta)\right] H_0 + s(\tau;\theta) H_1.$$
⁽²⁾

• which can be used by:

 \square defining H_0 and H_1 symbolically (we use sympy);

 ${f I}$ defining a scheduling function $s(\tau; \theta)$ and a timestep dt;

setting the solver to use for integrating Schrondiger's equation.

calling the AdiabaticEvolution object at some final time T.

$$H_{\rm ad}(\tau;\theta) = \left[1 - s(\tau;\theta)\right] H_0 + s(\tau;\theta) H_1.$$
⁽²⁾

• which can be used by:

- \square defining H_0 and H_1 symbolically (we use sympy);
- \mathfrak{S} defining a scheduling function $s(\tau; \theta)$ and a timestep dt;
- setting the solver to use for integrating Schrondiger's equation.
- calling the AdiabaticEvolution object at some final time T.

 \bullet This mechanism "pushes" the state during the evolution by sequentially executing a circuit obtained by trotterizing $H_{\rm ad}$.

$$H_{\rm ad}(\tau;\boldsymbol{\theta}) = \left[1 - s(\tau;\boldsymbol{\theta})\right] H_0 + s(\tau;\boldsymbol{\theta}) H_1.$$
⁽²⁾

• which can be used by:

- \square defining H_0 and H_1 symbolically (we use sympy);
- \mathfrak{S} defining a scheduling function $s(\tau; \theta)$ and a timestep dt;
- setting the solver to use for integrating Schrondiger's equation.
- calling the AdiabaticEvolution object at some final time T.

 \bullet This mechanism "pushes" the state during the evolution by sequentially executing a circuit obtained by trotterizing $H_{\rm ad}$.

• If solver=="exp", we use the evolutionary operator¹:

$$|\psi(\tau = j \mathrm{d}t)\rangle = \prod_{j}^{\leftarrow} U_{j} |\psi(\tau = 0)\rangle$$
 (3)

¹Translated into a circuit form using the Trotter decomposition.

Adiabatic evolution on gibo backends

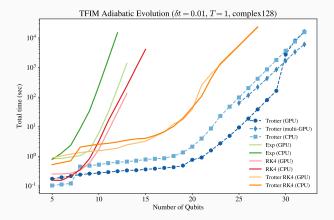
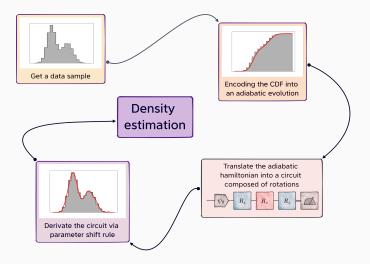


Figure 2: Adiabatic evolution execution with growing number of qubits and different solvers.

A full-stack QML algorithm



• Given a sample $\{x\}$ and calculated its CDF values F(x):

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - **%** we select two hamiltonians H_0 and H_1 such that a target observable has energy E = 0 and E = 1 respectively on H_0 and H_1 ground states;

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - **%** we select two hamiltonians H_0 and H_1 such that a target observable has energy E = 0 and E = 1 respectively on H_0 and H_1 ground states; **%** we may $(u, E) \to (a, E)$
 - 𝗞 we map $(x, F) → (\tau, E)$.

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - **%** we select two hamiltonians H_0 and H_1 such that a target observable has energy E = 0 and E = 1 respectively on H_0 and H_1 ground states;
 - 𝗞 we map $(x, F) → (\tau, E)$.
- The AE training strategy follows:

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H₀ and H₁ such that a target observable has energy E = 0 and E = 1 respectively on H₀ and H₁ ground states;
 % we map (x, F) → (τ, E).
- The AE training strategy follows:
 - 1. we run the evolution with random initial θ_0 into the scheduling;

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H₀ and H₁ such that a target observable has energy E = 0 and E = 1 respectively on H₀ and H₁ ground states;
 % we map (x, F) → (τ, E).
- The AE training strategy follows:
 - 1. we run the evolution with random initial θ_0 into the scheduling;
 - 2. we track the energy of a Pauli Z during the evolution;

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H₀ and H₁ such that a target observable has energy E = 0 and E = 1 respectively on H₀ and H₁ ground states;
 % we map (x, F) → (τ, E).
- The AE training strategy follows:
 - 1. we run the evolution with random initial θ_0 into the scheduling;
 - 2. we track the energy of a Pauli Z during the evolution;
 - 3. we calculate a loss function $J_{\rm mse}$:

$$J_{\rm mse} = \sum_{k=1}^{N_{\rm sample}} \left[E(\tau_k) - F(x_k) \right]^2;$$

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H₀ and H₁ such that a target observable has energy E = 0 and E = 1 respectively on H₀ and H₁ ground states;
 % we map (x, F) → (τ, E).
- The AE training strategy follows:
 - 1. we run the evolution with random initial θ_0 into the scheduling;
 - 2. we track the energy of a Pauli Z during the evolution;
 - 3. we calculate a loss function $J_{\rm mse}$:

$$J_{\rm mse} = \sum_{k=1}^{N_{\rm sample}} \left[E(\tau_k) - F(x_k) \right]^2;$$

4. we choose an optimizer to find $heta_{\rm best}$ which minimizes $J_{\rm mse}$.

- Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H₀ and H₁ such that a target observable has energy E = 0 and E = 1 respectively on H₀ and H₁ ground states;
 % we map (x, F) → (τ, E).
- The AE training strategy follows:
 - 1. we run the evolution with random initial θ_0 into the scheduling;
 - 2. we track the energy of a Pauli Z during the evolution;
 - 3. we calculate a loss function $J_{\rm mse}$:

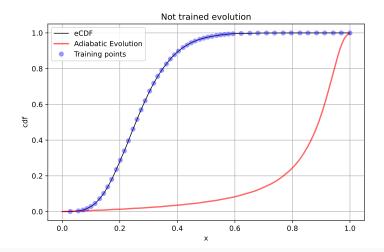
$$J_{\rm mse} = \sum_{k=1}^{N_{\rm sample}} \left[E(\tau_k) - F(x_k) \right]^2;$$

4. we choose an optimizer to find $heta_{\rm best}$ which minimizes $J_{\rm mse}$.

arXiv:2303.11346: "Determining probability density functions with adiabatic quantum computing."

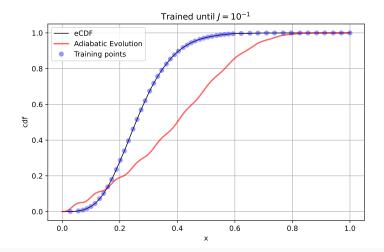
A toy example with nqubits=1 - starting point

nparams=20, dt=0.1, final_time=50, target_loss=None



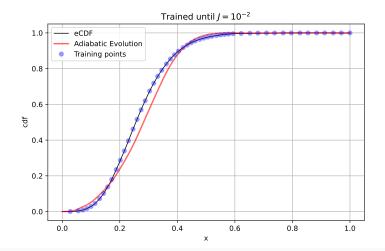
A toy example - until $J_{\rm MSE} = 10^{-1}$

nparams=20, dt=0.1, final_time=50, target_loss=1e-1



A toy example - until $J_{\rm MSE} = 10^{-2}$

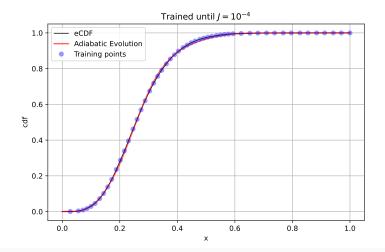
nparams=20, dt=0.1, final_time=50, target_loss=1e-2



11

A toy example - ending at $J_{\rm MSE} = 10^{-4}$

nparams=20, dt=0.1, final_time=50, target_loss=1e-4



SIMULATION: from $\{H_{ad}\}$ to a circuit and derivate!

• Firstly, we did some calculations and approximations in order to:

SIMULATION: from $\{H_{ad}\}$ to a circuit and derivate!

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^{n} e^{-iH_{j}dt} \rightarrow \mathcal{U}(t);$$

SIMULATION: from $\{H_{ad}\}$ to a circuit and derivate!

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^{n} e^{-iH_{j}dt} \rightarrow \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$\mathcal{U}(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

SIMULATION: from $\{H_{ad}\}$ to a circuit and derivate!

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^{n} e^{-iH_{j}\mathrm{d}t} \to \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$\mathcal{U}(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

• Then, we derivate the expected values using parameter shift rule and chain rule.

SIMULATION: from $\{H_{ad}\}$ to a circuit and derivate!

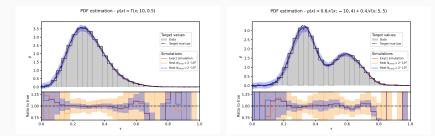
- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^{n} e^{-iH_{j}dt} \rightarrow \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$\mathcal{U}(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

• Then, we derivate the expected values using parameter shift rule and chain rule.

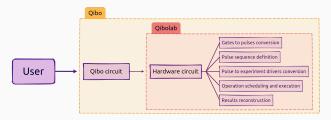


Hardware deployment

• qibo is hardware-agnostic!

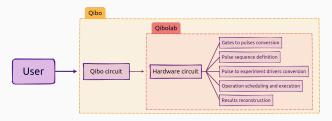
• qibo is hardware-agnostic!

• We defined an abstract Platform object, which can be selected via set_backend("qibolab", platform="my_platform").



• qibo is hardware-agnostic!

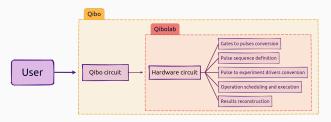
• We defined an abstract Platform object, which can be selected via set_backend("qibolab", platform="my_platform").



Some labs are already using qibo:

• qibo is hardware-agnostic!

• We defined an abstract Platform object, which can be selected via set_backend("qibolab", platform="my_platform").



Some labs are already using qibo:

arXiv:2202.07017: "An open-source modular framework for quantum computing."
 arXiv:2112.02933: "ICARUS-Q: Integrated Control and Readout Unit for Scalable Quantum Processors"

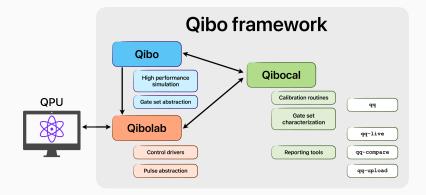
qibolab is not enough!

• Each quantum control routine is useless if the sequences of pulses are not well calibrated with the single qubit.

qibolab is not enough!

• Each quantum control routine is useless if the sequences of pulses are not well calibrated with the single qubit.

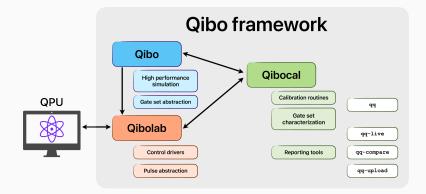
• For this reason, qibocal was born: a module for quantum calibration and verification.



qibolab is not enough!

• Each quantum control routine is useless if the sequences of pulses are not well calibrated with the single qubit.

• For this reason, qibocal was born: a module for quantum calibration and verification.



*a*rXiv:2303.10397: "Towards an open-source framework to perform quantum calibration and characterization."

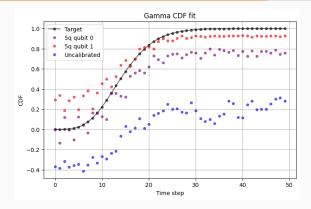


Figure 3: Different qubits requires different calibration and leads to different results.

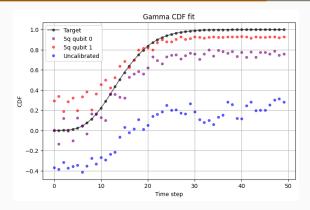


Figure 3: Different qubits requires different calibration and leads to different results.

Open questions:

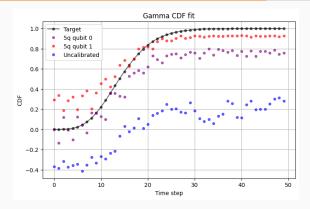


Figure 3: Different qubits requires different calibration and leads to different results.

Open questions:

by what if the entire training is performed on a NISQ device? *are the results self-resistent to the noise*?

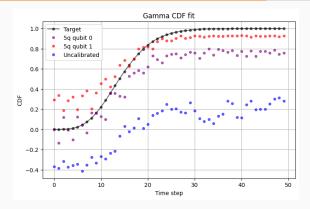


Figure 3: Different qubits requires different calibration and leads to different results.

Open questions:

- by what if the entire training is performed on a NISQ device? *are the results self-resistent to the noise*?

: what if we train on hardware?



Figure 4: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

Figure 4: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

 \bullet and then use some $E[\hat{O}]$ as predictor:

$$y_{pred} = \langle 0 | \mathcal{C}^{\dagger}(x; \theta) \hat{O} \mathcal{C}(x; \theta) | 0 \rangle.$$
(4)

Figure 4: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

 \bullet and then use some $E[\hat{O}]$ as predictor:

$$y_{pred} = \langle 0 | \mathcal{C}^{\dagger}(x; \theta) \hat{O} \mathcal{C}(x; \theta) | 0 \rangle.$$
(4)

• Using the parameter-shift rule, we can perform a Stochastic Gradient Descent (SGD) on the hardware.

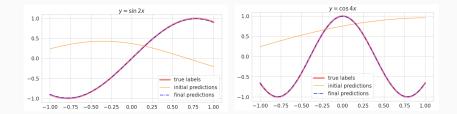
Figure 4: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

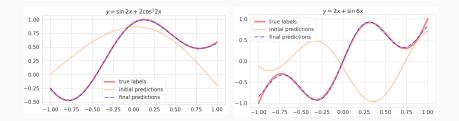
 \bullet and then use some $E[\hat{O}]$ as predictor:

$$y_{pred} = \langle 0 | \mathcal{C}^{\dagger}(x; \theta) \hat{O} \mathcal{C}(x; \theta) | 0 \rangle.$$
(4)

• Using the parameter-shift rule, we can perform a Stochastic Gradient Descent (SGD) on the hardware.

arXiv:2210.10787: "A quantum analytical Adam descent through parameter shift rule using Qibo."





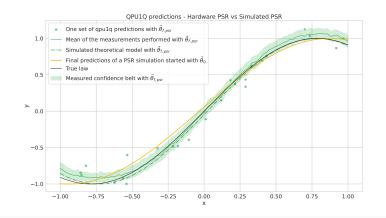
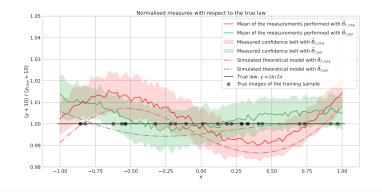
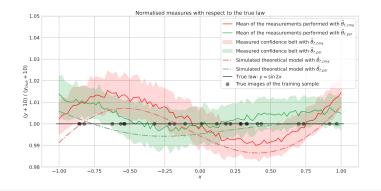
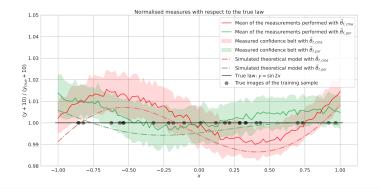


Figure 5: Batch Gradient Descent on the hardware, with gradients evaluated via Parameter-Shift Rule. We take 100 points $\{x_j\}$ in the range [-1, 1] and we make 100 predictions for each x_j . Mean and standard deviation are used for determining the estimations and the confidend belt.

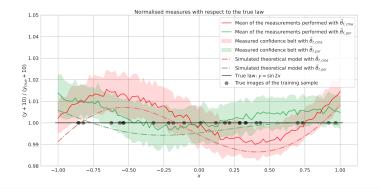




the full-stack framework works! comparable with a genetic algorithm;



the full-stack framework works! comparable with a genetic algorithm;
 we can tackle only easy problems: it is slow;



the full-stack framework works! comparable with a genetic algorithm;

we can tackle only easy problems: it is slow;

no mitigation: have been the errors absorbed into the optimization?

 \mathfrak{B} : how to get noise resistance?

• We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.

²We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

SIMULATION

- We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.
- We apply error mitigation techniques² during a QML training!

²We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

SIMULATION

• We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.

• We apply error mitigation techniques² during a QML training!

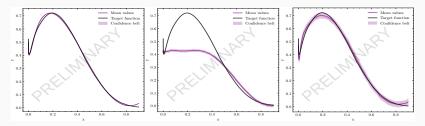


Figure 7: PDF fit performed with different levels of noisy simulation. From left to right, exact simulation, noisy simulation, noisy simulation applying error mitigation to the predictions.

²We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

SIMULATION

• We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.

• We apply error mitigation techniques² during a QML training!

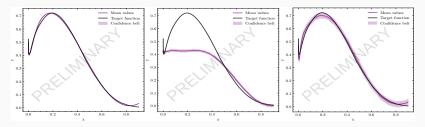


Figure 7: PDF fit performed with different levels of noisy simulation. From left to right, exact simulation, noisy simulation, noisy simulation applying error mitigation to the predictions.

Sun on the hardware upcoming!

²We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

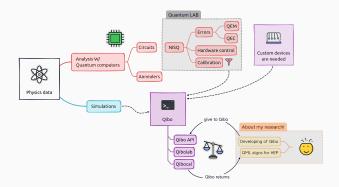
• I am excited to be part of the qibo team and to share it with you:

• I am excited to be part of the qibo team and to share it with you:

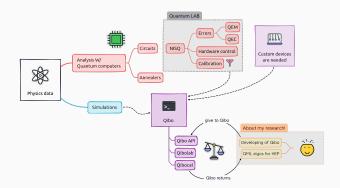
🃽 it's a perfect environment to tackle QML problems at 360°;

- I am excited to be part of the qibo team and to share it with you:
 - **\$** it's a perfect environment to tackle QML problems at 360°;
 - is based on a research-centred network, that we would like to grow more and more.

- I am excited to be part of the qibo team and to share it with you:
 - **\$** it's a perfect environment to tackle QML problems at 360°;
 - is based on a research-centred network, that we would like to grow more and more.



- I am excited to be part of the qibo team and to share it with you:
 - it's a perfect environment to tackle QML problems at 360°;
 - is based on a research-centred network, that we would like to grow more and more.



code is open-source here: feel free to make your own contribution!
 Have a look to our documentation.