

AWAKE Electron Sources for Run 2

Run2 prototype in CTF2 (ARTI)

Given Series and Seri

Conclusion and outlook

AWAKE collaboration meeting 25-26 April, Uppsala Steffen Doebert, J. Arnesano

Reduced scale prototype, 60 MeV, T24 as buncher and PSI-linearizing structure for acceleration. Goal: demonstrate the velocity bunching and emittance preservation with x-band Prototyping of key hardware

F-Cup Screen BTV1

ARTI in CTF2

Status:

- Phase 1 installed and operational
- All safety documentation finished
- DSO tests successfully performed
- Beam permit obtained
- Diagnostics installed and being commissioned
- Laser table installed and equipped Laser aligned and synchronised
- First beam tests were successful and promising

RF-gun build by INFN Frascati.

RF Conditioning data from the INFN RF-GUN in CTF2

Counting: 1-5k breakdowns depending on threshold → Very good result, promising for future reliable operation AWAKE

ARTI photoinjector laser

Eduardo Granados (SY-STI) Miguel Martinez Calderon (SY-STI) Baptiste Groussin (SY-STI)

Setup at CLEAR laser lab

IR to UV conversion stages

BBO FOR 4HG @ 1030 nm

Aperture, mm	Thickness, mm	θ, deg	φ, deg	Coating	Catalogue number	Price, EUR
6×6	0.1	50	90	P/P @ 515/257 nm	BBO-641H	600
6×6	0.15	50	90	P/P @ 515/257 nm	BBO-642H	570
6×6	0.2	50	90	P/P @ 515/257 nm	BBO-643H	550
6×6	0.3	50	90	P/P @ 515/257 nm	BBO-644H	535

Output at 257.5 nm

Peak (X,Y)R [µm]	(2351.7, 1554.4) 2819.0		
Centroid (X,Y)R [µm]	(4131.2, 3306.5) 5291.5		
Peak % Resp. [%]	65.1		
Eff. Area (mm²)	16.856		
Fluence [J/cm²]	0.803		
Eff. Diameter 86.5% [mm]	Invalid		
Aper. Diameter 86.5% [mm]	0.066		
Knife Edge 84.0% [mm]	7.839, 7.350		
Ellipticity			
Major, Minor 86.5% [mm]	7.852, 7.061		
Circularity	0.899		
Gaussian Fit 86.5%			
Coefficient	0.862, 0.857		
Aperture Uniformity			
Min, Mean, Max [digital]	24277.0, 27091.0, 30476.0		
Sigma, RMS [digital]	1849.5, 27152.9		
Image Uniformity			
Min, Mean, Max [digital]	6.0, 12219.9, 42656.0		
Flat Top 14.0%			
Beam Uniformity	0.390		
Plateau Uniformity	0.003		
Flatness Factor	0.381		
Edge Steepness	1.000		

Spot on cathode control and performance

UV pulse duration

RF synchronization performance

Thanks to Ben Wooley!

RF locking remote control panel

Phase noise spectrum

Integrated 1 Hz – 1 MHz ~ 1.5 ps RMS

Lots of room for improvement...

RF set-up: Input Power: 13 MW Gradient: 114 MV/m

Waring: calibrations still floating

A WAKE

Beam on Screen: Beam size: ~ 0.5 mm sigma

Yes it is really so beautiful !

Waring: calibrations still floating

Beam in spectrometer. Energy: ~ 5.7 MeV

Energy spread: ~ 185 keV

We still have some issues with the magnet setting which was limited by software

Waring: calibrations still floating

Beam charge: Faraday Cup: up to 440 pC This example ~ 300 pC

Waring: calibrations still floating

Copper Qe: 9 x 10-4

Very promising for Copper cathodes

No dark current basically not measurable for time being: < 5 pC (preliminary)

Simulations

We measured for time being 5.7 MeV and 185 keV for the non optimised beam ?!?

Benjamin Appleyard, CLS Canada

Simulations

Measured beam size around 0.5 mm, no emittance estimation yet

Benjamin Appleyard, CLS Canada

PIC Dark Current Simulations

AWAKE

No Solenoid

Solenoid: Antisymmetric mode

Pablo Martinez-Reviriego, IFIC

Dark Current Simulations

0.25

0.20

Charge (pC/keV) 0.10

0.05

0.00

X-band structure developments

Travelling wave Constant Impedance

Shunt Impedance [M Ω /m]	100
Group Velocity vg/c [%]	2.4
Q-Factor	7061
Attenuation [1/m]	0.7
Length [m]	0.9

Designed by INFN Frascati, D. Alesini, M. Diomede, for CompactLight and EuPraxia

Mechanical design made at CERN

CLIC style tolerances Vacuum brazing design

Structure to be inserted in a solenoid of 150 mm diameter bore radius

First short prototype under construction

C. Capelli, N. Chritin

Verify mechanical design, brazing assembly and tolerances needed Maybe low power RF measurements but no high power test planned

Conclusion and outlook

 Very good start of the beam commissioning. No major problems spotted so far Of course fine tuning is needed and systematic measurements.
Clearly much more work to do !
Apologises for the poor-man data acquisition

□ Will alternate commissioning periods with installations periods to complete the injector

□ Interesting times ahead, a first visible piece of the injector for Run 2c

Thanks to Jordan Arnesano for his contributions to AWAKE Welcome to Tobias Kulenkampff to take over in June

Additional material

X-band accelerating structure Mechanical design

RF-Design made by D. Alesini, M. Diomede, INFN Frascati