

Neural Network enhanced phase space tomography for AWAKE experiment

V. Bencini, F. Velotti

AWAKE Collaboration Meeting 26/04/2023

Emittance measurement

 \circ Emittance measurement is fundamental to obtain good agreement between simulations and measurements

How it was done:

- \circ Presently emittance is measured using classical quad scan
	- 1. Fit gaussian to measured beam profile
	- 2. Fit proper parabolic function
	- 3. Extract the Twiss parameters
- \circ Main limitations to accuracy:
	- Beam is not gaussian!

Parabolic curve does not fit measurements (in x plane at least)

Solution (under development)

 \circ Use phase space tomographic reconstruction.

 $1V - 1K$

Tomography in a nutshell

o Reconstruct n-dimensional image from projections taken at different angles in n-1 dimensional space

x (mm)

Tomography in a nutshell

- o Reconstruct n-dimensional image from projections taken at different angles in n-1 dimensional space
- o In 2D we use 1D projections taken from different angles around the object

26/04/2023 VITTORIO BENCINI - AWAKE COLLABORATION MEETING 5

Tomography in a nutshell

- o Reconstruct n-dimensional image from projections taken at different angles in n-1 dimensional space
- o In 2D we use 1D projections taken from different angles around the object
- \circ The projections are stacked in a 2D image called **sinogram**

Reconstruction techniques

ATV-A-KE

Analytical methods

- o BP Back projection
- o FBP Filtered back projection

Pros

• Very fast

Cons

- Performs badly when the number of projections is low
- Performs badly when angles are missing

Reconstruction techniques

Analytical methods

- BP Back projection
- FBP Filtered back projection

Iterative methods

- o SART Simultaneous Algebraic Reconstruction Tomography
- \circ [MENT](https://iopscience.iop.org/article/10.1088/1748-0221/8/02/P02003) Maximum Entropy Tomography

Pros

• Very fast

Cons

- Performs badly when the number of projections is low
- Performs badly when angles are missing

Pros

- Performs well when the number of projections is low
- Performs well when angles are missing

Cons

- Can be slow
- Reconstruction quality depends on number of iterations

A very comprehensive comparison between algorithms can be found in [here](http://article.sapub.org/10.5923.j.ijps.20150401.02.html)

Reconstruction techniques

How this applies to beam physics?

THANKS TO THIS TRANSFORMATION WE TREAT IT AS A TOMOGRAPHY PROBLEM!

 $\theta = 101^{\circ}$ $s = 0.84$

AWAKE

It works!

Not that easy

- \circ Scaling factor and angle can be obtained from transport matrix.
- \circ The range of accessible angles is limited by the system geometry and the quads strengths limit.

$$
-40 \le k_q \le 40 \Rightarrow 11 \le \theta \le 162
$$

o Access to limited angles means a lower reconstruction accuracy

Not that easy

- o **MSE = 5.2e-03** Scaling factor and angle can be obtained from transport matrix.
- \circ The range of accessible angles is limited by the system geometry and the quads strengths limit.

$$
-40 \le k_q \le 40 \Rightarrow 11 \le \theta \le 162
$$

o Access to limited angles means a lower reconstruction accuracy

Can we use AI to solve this issue?

- o Neural networks can be a powerful tool to complete the information about missing angles
- o Important dependence between each projection and the one that precedes
- \circ The ideal model would take into account the sequential structure of the data

Can we fill this gap? $\qquad \circ$ Recurrent Neural Networks are a good fit!

ATV-A-KE

Using LSTM neural nets

- o Long Short Term Memory (LSTM) neural networks are a type of recurrent neural network.
- \circ They help capture long-term dependencies in data that other models cannot.
- o The memory block within an LSTM cell helps maintain information over time.

[Credit for the animation](https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn) **Plots from <https://colah.github.io/posts/2015-08-Understanding-LSTMs/>**

1. Create particle distributions

- \circ Sampling α , β , ε in a given range
- o Select among 6 possible distribution types
- o Generate 10000 distributions

- \circ Sampling α , β , ε in a given range
- o Select among 6 possible distribution types
- o Generate 10000 distributions

1. Create particle distributions 2. Create sinograms in the full angle range

- \circ Track each distribution in the full angle range with 5 deg spacing
- o Produce the sinograms

1. Create particle distributions

- \circ Sampling α , β , ε in a given range
- o Select among 6 possible distribution types
- o Generate 10000 distributions

3. Train the LSTM network

2. Create sinograms in the full angle range

- \circ Track each distribution in the full angle range with 5 deg spacing
- o Produce the sinograms

- \circ Sampling α , β , ε in a given range
- o Select among 6 possible distribution types
- o Generate 10000 distributions

3. Train the LSTM network

1. Create particle distributions 2. Create sinograms in the full angle range

- Track each distribution in the full angle range with 5 deg spacing
- o Produce the sinograms

4. Evaluate the model

- \circ Evaluate capacity of reproducing sinograms
- o Compare impact on reconstruction quality for different methods

Example from test set

Example from test set

Example from test set

Reconstructing the beam distribution using the LSTM completed sinogram gives an accuracy equal to the one with full angle range.

Model performance

- o Comparing different algorithms on the full test set.
- o With the help of LSTMs the original accuracy can be fully restored.

Conclusions

- o Simulated different algorithms for phase space tomography to **reconstruct initial beam distribution** from **beam profile measurements.**
- **Developed a new approach** that uses LSTM networks to address the issue of missing angles, leading to reconstruction accuracy equal to the case with full angle range.
- \circ The method (and the [code](https://gitlab.cern.ch/vbencini/beam_tomography)) can be applied to other systems. Creating the dataset and training the network takes few hours and has to be done only once!

Next Steps

- \circ Study the sensitivity of the reconstruction to errors in quadrupole strength or momentum.
- \circ Development of a customized loss function for the network to consider physics constraint to the problem (constant density in projection)
- o Test method on real data in the next AWAKE electron run.

Thank you for your attention!

How does it work in practice?

Model set-up

- 1. Create particle distributions
- 2. Create sinograms in the full angle range
- 3. Train the LSTM network
- 4. Evaluate the model

How does it work in practice?

Preparation

- 1. Define reference Twiss parameters (can be done with a conventional quad scan)
	- Reference to define the Twiss range to create the dataset
	- Used to normalize the beam coordinates
- 2. Specify characteristics of the transport section
- 3. Assume set of distributions to create the dataset

- 2. Create sinograms in the full angle range
- 3. Train the LSTM network
- 4. Evaluate the model

Use on real data

- 1. Measure profiles at given angles (converted to equivalent quad strengths)
- 2. Apply scaling to projections
- 3. Re-binning of projections to match number of bins used in the model
- 4. Perform reconstruction applying LSTM model

Compare networks

Compare networks

Classic architecture architecture Autoregressive architecture

Fixed length of inputs and predictions **Number of prediction can be modified**